Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's smallest high performance, low energy sensor

03.07.2008
Scientists at the University of Southampton’s School of Electronics and Computer Science (ECS) are developing the world’s smallest, high-performance and low-power sensor in silicon which will have applications in biosensing and environmental monitoring.

Professor Hiroshi Mizuta and his team at ECS are part of the three year European FP7-funded NEMSIC (Nano-electro-mechanical-system-integrated-circuits) project which will make these devices possible.

As well as being the smallest sensor on the market to date, it will have extreme sensitivity and very low power consumption. It will achieve this by co-integrating single-electron transistors (SETs) and nano-electro-mechanical systems (NEMS) on a common silicon technology platform.

‘Power consumption is a big issue at the moment as devices use current whether they are switched off and on’ said Professor Mizuta. ‘The single-electron transistor combined with the NEM device technology reduces power consumption at both ON and OFF states of the sensor. Stand-by power is reduced to zero by having a complete sleep with the NEM switch when it is off.’

Professor Mizuta and his team will develop the single-electron transistor with a unique suspended silicon nanobridge which will work as an extremely sensitive detector for biological and chemical molecules.

‘This is the first time that anyone has combined these two nanotechnologies to develop a smart sensor,’ said Professor Mizuta. ‘The traditional CMOS (Complementary metal-oxide-semiconductor) approach has many limitations so we needed to find a new approach.’

The sensing devices will need to be made to the nanoscale, which will be made possible by the new electron beam lithography machine which will be available in the new ECS Mountbatten building when it opens in July.

‘This sensor will be the smallest and use less power than any other on the market,’ said Professor Mizuta. ‘The fact that it will be at the nanoscale means that it will be able to detect either single-charge transfer and/or change in masses caused by a small amount of chemical and biological molecules electrically’.

NEMSIC is headed by Professor Adrian Ionescu of Ecole Polytechnique Fédérale de Lausanne and other partners are: Delft University of Technology, Stitching IMEC Nederland, Commissariat à l’Energie Atomique – Laboratoire d’Electronique de la Technologie de l’Information, SCIPROM Sarl, Interuniversity Micro-electronics Center, Honeywell Romania SRL – Sensors Laboratory Bucharest, Université de Genève.

Helene Murphy | alfa
Further information:
http://www.ecs.soton.ac.uk
http://www.ecs.soton.ac.uk/research/mountbatten.php

More articles from Power and Electrical Engineering:

nachricht Factory networks energy, buildings and production
12.07.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Manipulating single atoms with an electron beam
10.07.2018 | University of Vienna

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>