Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar Reactor Heads to Europe for Testing

27.06.2008
A research team from Valparaiso University’s College of Engineering will take a solar reactor they’ve designed and built from scratch to Switzerland next month to begin a series of tests at one of the world’ premier solar energy research institutes. Valparaiso is a member of the Council on Undergraduate Research.

Dr. Robert Palumbo, Jenny professor of emerging technology and one of the world’s leading solar energy researchers, and three of his undergraduate students will spend four and a half weeks at the Paul Scherrer Institute as Valparaiso’s solar energy research program enters its third year.

The program was launched in August 2006 with a $300,000 grant from the National Science Foundation to study the industrial feasibility of high temperature solar electrolysis – a process that has the potential to make large-scale storage and transportation of the sun’s energy practical.

“We started with nothing other than theory to design our solar reactor, so it’s exciting to reach the point where we can begin testing,” said Dr. Palumbo, who formerly served as head of the Paul Scherrer Institute’s High Temperature Solar Technology Laboratory. “Our emphasis this summer will be validating that the reactor can perform under our desired operating conditions.”

During tests, sunlight will be collected, focused and directed into Valparaiso’s reactor – a cylindrical device about three-feet long where the electrolytic process will take place. Inside the reactor, a crucible containing the chemicals involved in the electrolytic process will be heated to between 1,700 to 3,000 degrees Fahrenheit, at which point electrolysis will begin and separate zinc oxide into oxygen and metallic zinc.

The team plans to spend its first few days in Switzerland testing the mechanical behavior of the reactor, finding out how it behaves when exposed to sunlight that’s been concentrated thousands of times beyond what is experienced on a sunny day. Once Dr. Palumbo and his students determine their reactor can operate successfully – that its various components hold up under the extreme temperatures and that the inert gases contained within the reactor don’t leak out – they will begin studying the electrolysis process itself.

During that phase of testing, the team will conduct the electrolysis at different temperatures, different voltages and explore a variety of options for how electricity is supplied to the reactor.

Valparaiso’s research team is producing zinc in its experiments because the commonly-used metal could be used in fuel cells for the production of electricity. The process thus could be a means by which solar energy is stored as chemical energy in the form of zinc, allowing it to be transported and used at any time.

The higher the temperature during electrolysis, the larger the amount of solar energy that can be substituted for the electricity needed to convert zinc oxide into metallic zinc. Over the past two years, students have spent a considerable amount of time investigating and addressing the problem of electrical resistance in the electrolysis cell, since less resistance means that less electricity needs to be added to the solar electrolysis process.

Working with Dr. Palumbo are senior mechanical engineering and German majors Katie Krueger of Maumee, Ohio; Peter Krenzke of Plainfield, Ind.; and Nate Leonard of Dexter, Mich.

Leonard is looking forward to observing the performance of the solar reactor he and other engineering students have worked together to build.

“There are a lot of challenges to overcome in high temperature solar electrolysis,” Leonard said. “We’ll learn a lot from our experiments this summer, and it’s rewarding to know our research could help lead to industrial use down the road.”

This summer’s research at the Paul Scherrer Institute will set the stage for further testing of the solar reactor in the 2009 and 2010.

“It will take more than one month to complete our testing of the electrolysis process and determine whether we can indeed replace electricity with solar energy on an industrial scale,” Dr. Palumbo. “This summer is the initial step in testing that will continue over the next two summers.”

After the team returns to Valparaiso in August, Dr. Palumbo and his students will take the data they’ve collected and begin making improvements to the reactor.

“I expect our testing will show us a number of improvements we can make, so that next summer we’ll have a reactor that we’re really happy with,” he said. “Then, we can concentrate more on the science of solar electrolysis.”

Dustin J. Wunderlich '01 | newswise
Further information:
http://www.cur.org/

More articles from Power and Electrical Engineering:

nachricht No more trial-and-error when choosing an electrolyte for metal-air batteries
15.07.2019 | Washington University in St. Louis

nachricht Solar power with a free side of drinking water
11.07.2019 | King Abdullah University of Science & Technology (KAUST)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>