Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Superconductors Present New Mysteries, Possibilities

06.06.2008
Researchers have unlocked some of the secrets of newly discovered iron-based high-temperature superconductors, research that could result in the design of better superconductors for use in industry, medicine, transportation and energy generation.

Johns Hopkins University researchers and colleagues in China have unlocked some of the secrets of newly discovered iron-based high-temperature superconductors, research that could result in the design of better superconductors for use in industry, medicine, transportation and energy generation.

In an article published today in the journal Nature, the team, led by Chia-Ling Chien, the Jacob L. Hain Professor of Physics and director of the Material Research Science and Engineering Center at The Johns Hopkins University, offers insights into why the characteristics of a new family of iron-based superconductors reveal the need for fresh theoretical models which could, they say, pave the way for the development of superconductors that can operate at room temperature.

“It appears to us that the new iron-based superconductors disclose a new physics, contain new mysteries and may start us along an uncharted pathway to room temperature superconductivity,” said Chien, who teamed up on the research with Tingyong Chen and Zlatko Tesanovic, both of Johns Hopkins, and X.H. Chen and R.H. Liu of the Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China in Anhui, China.

Superconductors are materials that can carry electrical current without friction and as a result, don’t waste electrical energy generating heat. (Imagine your laptop computer or PC not getting warm when it is turned on.) This means that an electrical current can flow in a loop of superconducting wire forever without a power source. Today, superconductors are used in hospital MRI machines, as filters in cell phone base stations and in high-speed magnetic levitating trains. Unfortunately, most of today’s superconducting materials can only function and operate at extremely low temperatures, which means that they must be paired with expensive supercooling equipment. This presents researchers with a grand challenge: to find superconducting material that can operate at more “normal” temperatures.

“If superconductors could exist at room temperatures, the world energy crisis would be solved,” Chen said.

Chen explains that though all metals contain mobile electrons which conduct electricity, a metal becomes a superconductor only when two electrons with opposite “spins” are paired. The superconductor energy “gap,” which is the amount of energy that would be needed to break the bond between two electrons forming such a pair to release them from one another, determines the robustness or strength of the superconducting state. This energy gap is highest at low temperatures, but vanishes at the temperatures at which superconductivity ceases to exist.

“This gap -- its structure and temperature dependence -- reveal the ‘soul’ of the superconductor, and this is what was measured in our experiment,” Chien said.

The team measured this gap and its temperature variation, revealing that the pairing mechanism in iron-based superconductors is different from the one in more traditional, copper-based, high-temperature superconductors. To the researchers’ surprise, their results were incompatible with some of the newly proposed theories in this mushrooming field.

“In the face of this discovery, it is clear that we need to reexamine the old and invent some new theoretical models,” Tesanovic said. “I predict that these new, iron-based superconductors will keep us physicists busy for a long, long while.”

This research was supported by the U.S. National Science Foundation and the Natural Science Foundation of China.

Lisa De Nike | newswise
Further information:
http://www.jhu.edu

More articles from Power and Electrical Engineering:

nachricht Anode material for safe batteries with a long cycle life
06.08.2020 | Karlsruher Institut für Technologie (KIT)

nachricht ETRI develops eco-friendly color thin-film solar cells
31.07.2020 | National Research Council of Science & Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>