Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Superconductors Present New Mysteries, Possibilities

06.06.2008
Researchers have unlocked some of the secrets of newly discovered iron-based high-temperature superconductors, research that could result in the design of better superconductors for use in industry, medicine, transportation and energy generation.

Johns Hopkins University researchers and colleagues in China have unlocked some of the secrets of newly discovered iron-based high-temperature superconductors, research that could result in the design of better superconductors for use in industry, medicine, transportation and energy generation.

In an article published today in the journal Nature, the team, led by Chia-Ling Chien, the Jacob L. Hain Professor of Physics and director of the Material Research Science and Engineering Center at The Johns Hopkins University, offers insights into why the characteristics of a new family of iron-based superconductors reveal the need for fresh theoretical models which could, they say, pave the way for the development of superconductors that can operate at room temperature.

“It appears to us that the new iron-based superconductors disclose a new physics, contain new mysteries and may start us along an uncharted pathway to room temperature superconductivity,” said Chien, who teamed up on the research with Tingyong Chen and Zlatko Tesanovic, both of Johns Hopkins, and X.H. Chen and R.H. Liu of the Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China in Anhui, China.

Superconductors are materials that can carry electrical current without friction and as a result, don’t waste electrical energy generating heat. (Imagine your laptop computer or PC not getting warm when it is turned on.) This means that an electrical current can flow in a loop of superconducting wire forever without a power source. Today, superconductors are used in hospital MRI machines, as filters in cell phone base stations and in high-speed magnetic levitating trains. Unfortunately, most of today’s superconducting materials can only function and operate at extremely low temperatures, which means that they must be paired with expensive supercooling equipment. This presents researchers with a grand challenge: to find superconducting material that can operate at more “normal” temperatures.

“If superconductors could exist at room temperatures, the world energy crisis would be solved,” Chen said.

Chen explains that though all metals contain mobile electrons which conduct electricity, a metal becomes a superconductor only when two electrons with opposite “spins” are paired. The superconductor energy “gap,” which is the amount of energy that would be needed to break the bond between two electrons forming such a pair to release them from one another, determines the robustness or strength of the superconducting state. This energy gap is highest at low temperatures, but vanishes at the temperatures at which superconductivity ceases to exist.

“This gap -- its structure and temperature dependence -- reveal the ‘soul’ of the superconductor, and this is what was measured in our experiment,” Chien said.

The team measured this gap and its temperature variation, revealing that the pairing mechanism in iron-based superconductors is different from the one in more traditional, copper-based, high-temperature superconductors. To the researchers’ surprise, their results were incompatible with some of the newly proposed theories in this mushrooming field.

“In the face of this discovery, it is clear that we need to reexamine the old and invent some new theoretical models,” Tesanovic said. “I predict that these new, iron-based superconductors will keep us physicists busy for a long, long while.”

This research was supported by the U.S. National Science Foundation and the Natural Science Foundation of China.

Lisa De Nike | newswise
Further information:
http://www.jhu.edu

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>