Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rensselaer Polytechnic Institute Illuminates the Future of Lighting

25.05.2011
Energy@Rensselaer: Rensselaer Polytechnic Institute Illuminates the Future of Lighting

University’s Pair of World-Class Research Centers Investigate the “Whys and Hows” of Lighting

Lighting technology touches nearly everything we do—from illuminating our homes and workplaces, to making a left turn at an intersection, or snapping a photo with a cell phone. Given the sheer ubiquity of lighting, it’s easy to take the technology for granted—but lighting is the subject of intense scrutiny by scientists at two Rensselaer Polytechnic Institute research centers.

The field of lighting is undergoing a fascinating, revolutionary transformation. The century-old light bulb is steadily ceding ground to its high-tech successor, the light-emitting diode (LED). While the promise of LEDs as a long-lived, energy-efficient heir to light bulbs is undeniable, the true promise of LED and solid-state lighting technology transcends illumination. LEDs offer the potential to control, manipulate, and use light in entirely new ways for a surprisingly diverse range of areas. Our understanding of all types of lighting continues to grow.

Rensselaer is a leading voice in expanding the frontier of lighting research. The university has assembled a critical mass of experts and researchers who are investigating the full spectrum of lighting and lighting research. Much of this innovation is facilitated through a pair of world-class, industry-focused research centers: the Lighting Research Center (LRC) and the Smart Lighting Engineering Research Center (ERC). The complementary centers, both situated about 25 kilometers east of where Thomas Edison perfected the first mass-produced incandescent light bulb, are using lighting to create a brighter, more sustainable future.

Established in 1988, the LRC has built an international reputation as a reliable source for objective information about lighting technologies and applications. The ERC, launched in 2008, is developing new technologies and applications for improved and smarter lighting devices and systems.

“LEDs and lighting research present a rich opportunity, in terms of energy efficiency and human health, and toward unearthing a host of yet-undiscovered applications,” said Rensselaer President Shirley Ann Jackson. “With innovation, ingenuity, and old-fashioned hard work, the LRC and ERC at Rensselaer are rewriting the rules for making, manipulating, exploiting, and understanding the effects of lighting. And by partnering closely with industry, we are ensuring these new technologies are moving swiftly from the lab to the marketplace.”

Lighting Research Center

The LRC is the world's leading university-based research and education organization devoted to lighting. Programs and activities at the center include laboratory testing and real-world demonstration and evaluation of lighting products, while also conducting research into energy efficiency, new products and technologies, lighting design, and human factors issues. The LRC offers a doctoral program and one- and two-year master’s degree programs in lighting, as well as global training programs for government agencies, utilities, contractors, lighting designers, and other lighting professionals.

“We see the LRC as the nucleus for independent lighting research and education, as well as the pre-eminent source of objective, timely information about lighting technologies, applications, and about human response to light,” said Rensselaer Professor and LRC Director Mark Rea. “For more than two decades, the LRC has transformed science into real-world applications, while always remaining true to its mission—advancing the effective use of light for society and the environment.”

For example, research by Rensselaer Professor Nadarajah Narendran led to the development of the Scattered Photon Extraction method for improving white LED performance by more than 30 percent. Globally, the LRC is performing laboratory testing of LED-based, off-grid lighting products under a World Bank Group contract to improve access to modern, clean lighting in Sub-Saharan Africa. In another project, Rensselaer Associate Professor Mariana Figueiro conducted the first field studies examining how light impacts teenagers’ sleeping habits and school performance, contributing to a new daylighting design guide for schools by Rensselaer Professor Russ Leslie.

Smart Lighting ERC

Just as the transistor revolutionized modern electronics, LEDs are poised to enable the next generation of future lighting systems with radically new capabilities. The Smart Lighting Engineering Research Center at Rensselaer, funded primarily by the National Science Foundation, is advancing the fundamental scientific and engineering approaches required to realize this potential of LEDs and solid-state lighting. The ERC team is working to create better LEDs, as well as new sensors and systems required to effectively to monitor and control these LEDs.

“We see the ERC as the advanced research engine for future solid-state lighting systems that will bring a vast new range of capabilities to lighting,” said Rensselaer Professor and ERC Director Robert Karlicek. “We currently work with the LRC to define critical human-factor considerations for lighting to ensure that future LED luminaires, lighting sensors, and control technologies are both energy efficient and optimized for human health and safety. These lighting solutions provide additional benefits, including data delivery and efficient, vivid displays.”

In one project, Rensselaer Professor Partha Dutta works with an interdisciplinary team of undergraduate students to demonstrate the feasibility of LCD-based virtual windows. To make virtual window technology a reality, the displays need to be bright and efficient enough to reproduce light from an actual window. Rensselaer Professors Christian Wetzel and Shawn-Yu Lin are developing the technologies needed to create a family of polarized LEDs in various colors that will achieve the required brightness and reduction in energy consumption.

Energy and the Environment

Lighting and lighting research at Rensselaer fall under the university’s strategic research thrust of Energy and the Environment. The research leaders who work, study, and innovate at Rensselaer share a common focus: unearthing new opportunities for solving the 21st century’s most challenging problems.

“Lighting for illumination, and for televisions and other display devices, comprises a considerable percentage of energy usage in the United States and around the world,” said Rensselaer Provost Robert Palazzo. “This challenge presents an opportunity, and Rensselaer—particularly through the ERC and LRC—is deeply committed to innovating solutions for greater efficiency in lighting technologies and applications.”

Right now, more than 6.5 billion people are competing for the Earth’s dwindling supply of fossil fuels. By 2050, there will be 8 to 10 billion, and major advances in energy technology will be required to meet their needs. Rensselaer has faced that challenge by launching and expanding programs in renewable energy sources and energy conservation. The Institute is also dedicated to tackling major environmental concerns, including sustainable development and the global need for clean water. Lighting technology is a key component of this strategic thrust.

“The ERC is focused on educating a new class of electrical engineers and materials scientists who understand both the fundamental physical science and engineering of advanced solid-state lighting systems,” said David Rosowsky, dean of the School of Engineering at Rensselaer. “This is a critical component of our mission to educate the next generation of engineering leaders, who have the multidisciplinary knowledge and experience to innovate local solutions to the grand, global challenges we will face in the coming decades.”

For more information on the LRC and Smart Lighting ERC at Rensselaer, visit:

• Lighting Research Center
http://www.lrc.rpi.edu/
• Smart Lighting ERC
http://smartlighting.rpi.edu/
• Energy@Rensselaer: Zeroing in on the Elusive Green LED
http://news.rpi.edu/update.do?artcenterkey=2860
• NSF Launches an ERC To Develop Smart Lighting
http://1.usa.gov/htftQh
• Smart Lighting ERC Deploys New Technology on Campus
http://www.rpi.edu/about/inside/issue/v4n17/lighting.html
• First Field Studies on the Impact of Light on Teenagers’ Sleeping Habits
http://www.lrc.rpi.edu/programs/lightHealth/projects/K12light.asp
• World Bank Group Selects LRC To Test LED-based, Off-grid Lighting Products in Support of Lighting Africa Program

http://www.lrc.rpi.edu/resources/newsroom/pr_story.asp?id=197

• Bringing Advanced, Energy-Efficient LED Lighting to Aviation
http://www.lrc.rpi.edu/programs/solidstate/aviation.asp
• Improving LED Light Output and Efficacy Through SPE
http://www.lrc.rpi.edu/programs/solidstate/speLED.asp
Contact
Michael Mullaney
Rensselaer Polytechnic Institute
Troy, NY
518-276-6161
mullam@rpi.edu
www.rpi.edu/news
Visit the Rensselaer research and discovery blog: http://approach.rpi.edu
Follow us on Twitter: www.twitter.com/RPInews

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu/news

More articles from Power and Electrical Engineering:

nachricht A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes
20.07.2018 | Science China Press

nachricht Future electronic components to be printed like newspapers
20.07.2018 | Purdue University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>