Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reliable and extremely long-lasting – high-voltage power electronics for network expansion

04.08.2015

How is it possible to increase the dielectric strength and reliability of power modules for medium- and high-voltage applications?

This question was addressed by scientists at Rogers Germany GmbH, an insulating substrate manufacturer based in Eschenbach, Germany, and the Fraunhofer Institute for Integrated Systems and Device Technology IISB in Erlangen.


Large DBC card with 24 different test designs for partial discharge tests.

Fraunhofer IISB

In the framework of the APEx research project, the researchers developed new construction and testing techniques for high-voltage modules. The project was supported by the German Federal Ministry for Education and Research (BMBF) for over two and a half years with approx. 1.3 million euros and was coordinated by the Fraunhofer IISB.

Today, power electronics systems are already found along the entire power generation chain – from the power station to the consumer. These systems continue to grow in importance due to the German federal government's decision to expand the energy networks.

Power electronic systems are the key components for an efficient transmission and distribution of electrical power and for ensuring network stability. Power modules with voltage classes up to 6.5 kV have become established in industrial drive technology and in rail technology. However, the new applications in energy technology make considerably higher demands of the dielectric strength and the reliability of these modules.

The main ceramic insulator, the socalled DBC insulating substrate (DBC: "Direct Bonded Copper") can be regarded as the central component of the power modules. The DBC substrate serves as a circuit carrier and accommodates the electronic power devices. The electrical contacting of the devices and the actual wiring of the circuit take place via a copper layer on the substrate surface that is formed by etching.

In the project "Construction and Testing Technology for Extremely Durable High-Voltage Modules" (APEx), it was possible to increase the dielectric strength of currently available DBC insulation ceramics using an optimized module design. In addition to specific material characteristics, the electrical field distribution in and around the insulator is a significant influencing factor, among others.

Increases in the electrical field strength especially occur at the edge structures of the etched copper layer. The field increases cause local insulation currents, socalled partial discharges, in the surrounding insulating material, which can considerably reduce the lifetime of the power modules. The amount of the field increases depends on the applied voltage on the one hand as well as strongly on the geometric form of the edge structure on the other. For this reason, it can be influenced in a relatively cost-neutral way.

To optimize the edge structures, the maximum field strengths that occur on different designs had to be simulated and associated with partial discharge measurements. A comprehensive, simulation-based preliminary investigation of the field strength distribution on the edge structures of the DBCs identified the principal geometric and material-specific influencing factors and allowed a basic theoretical understanding of the interactions.

This also required a review of the simulation tools as well as the models used, especially to circumvent so-called unavoidable singularities. In numerical simulation, the modeling of ideal edges can produce excessive values for the field strengths that occur. With the FEM simulation (FEM: "Finite Element Method") used for this, it is therefore essential to have the right lattice parameters and select suitable measuring points to be able to exclude gross distortions of the calculated field strength distributions.

The findings obtained from the simulations and the newly developed ideas were confirmed by partial discharge measurements on corresponding test designs with adapted edge structures. Thanks to the support of the BMBF, it is now also possible – in addition to purely indirect measurement – to detect the precise point or origin of partial discharges visually using a UV camera system at Fraunhofer IISB.

To increase the reliability and lifetime of power modules, tests were also carried out on coating systems in the framework of APEx. Filling microcracks and insulating gaps with suitable inorganic and organic materials considerably increased the mechanical resistance. Accelerated aging tests on module-oriented set-ups in temperature shock cabinets demonstrated the improved thermal fatigue resistance or storage stability of the DBC modules coated in this way.

APEx was supported in the framework of the BMBF support program "IKT 2020 – Research for Innovations". One objective of IKT 2020 is to develop innovative materials and components in electronics for the application field of energy supply.

On the basis of the modifications for DBC power modules studied in APEx, initial prototypes were produced at Rogers Germany GmbH. The optimization of the edge structures as well as the coating technology can be used individually or in combination to improve the product characteristics. The methods can be used on existing DBC layouts as well as on standardized power module dimensions.

The continued decentralization of the energy supply in the medium- and high-voltage sector suggests an increasing demand for breaker cells with an extremely long lifetime of 40 or more years in continuous operation as well as with high dielectric strength. Last but not least, this makes the availability of such components strategically important for the energy industry.

Images for editorial use can be found at http://www.iisb.fraunhofer.de/presse.

Contact

Andreas Schletz
Fraunhofer Institute for Integrated Systems and Device Technology IISB
Schottkystrasse 10, 91058 Erlangen, Germany
Phone +49 911 23568 - 27
Fax +49 911 23568 - 12
andreas.schletz@iisb.fraunhofer.de

Fraunhofer IISB

Founded in 1985, the Fraunhofer Institute for Integrated Systems and Device Technology IISB conducts applied research and development in the fields of power electronics, mechatronics, microelectronics and nanoelectronics. The work of the institute in power electronic systems for energy efficiency, hybrid and electrical automobiles as well as in technology, device and material development for nanoelectronics enjoys international attention and recognition.
In the business area of power electronics, the primary focus is on topics such as innovative circuit and system solutions for highly efficient and compact power converters, mechatronic 3D integration, multifunctional integration and use of new materials and semiconductor devices. Application fields include e.g. electrical energy transmission, drive technology, switching power supplies and voltage transducers, components for vehicle technology and vehicle models, construction and connection technology for passive and active power modules as well as lifetime and reliability tests. Fraunhofer IISB additionally has extensive experience in the area of error analysis. This applies to all levels of electronic circuits, from chips to chip contacting, housings and circuit carriers or insulation substrates, up to passive devices.
Around 230 employees work in contract research for industry and public institutions. In addition to its headquarters in Erlangen, the IISB also has two further locations in Nuremberg and Freiberg. The IISB closely cooperates with the Chair of Electron Devices at the Friedrich-Alexander-University Erlangen-Nuremberg.

Weitere Informationen:

http://www.iisb.fraunhofer.de/presse Press release and Images for editorial use.

Presse Institute | Fraunhofer-Gesellschaft

Further reports about: BMBF COPPER Device IISB circuit drive technology energy supply material measurements voltage

More articles from Power and Electrical Engineering:

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Behavior-influencing policies are critical for mass market success of low carbon vehicles
17.07.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>