Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Portable Laser Backpack Revolutionizes 3D Mapping

09.09.2010
A portable, laser backpack for 3D mapping has been developed at the University of California, Berkeley, where it is being hailed as a breakthrough technology capable of producing fast, automatic and realistic 3D mapping of difficult interior environments.

Research leading to the development of the reconnoitering backpack, was funded by the Air Force Office of Scientific Research and the Army Research Office under the guidance of program managers, Dr. Jon Sjogren (AFOSR) and Dr. John Lavery (ARO).

The backpack is the first of a series of similar systems to work without being strapped to a robot or attached to a cart. At the same time, its data acquisition speed is very fast, as it collects the data while the human operator is walking; this is in contrast with existing systems in which the data is painstakingly collected in a stop and go fashion, resulting in days and weeks of data acquisition time.

Using this technology, Air Force personnel will be able to collectively view the interior of modeled buildings and interact over a network in order to achieve military goals like mission planning.

Under the direction of Dr. Avideh Zakhor, lead researcher and UC Berkeley professor of electrical engineering, the scientists have been able to use this more portable method of mapping by way of sensors or lightweight (less than eight ounces) laser scanners.

"We have also developed novel sensor fusion algorithms that use cameras, lasers range finders and inertial measurement units to generate a textured, photo-realistic, 3D model that can operate without GPS input and that is a big challenge," said Zakhor.

There are many basic research issues to achieve a working system, including calibration, sensor registration and localization. Using multiple sensors facilitates the modeling process, though the data from various sensors do need to be registered and precisely fused with each other in order to result in coherent, aligned, and textured 3D models. Localization is another technical challenge since without it; it is not possible to line up scans from laser scanners in order to build the 3D point cloud, which is the first step in the modeling process.

"It is fair to say that embarking on such a hands-on project, to make indoor 3D modeling a matter of routine, a number of research questions of a fundamental nature came up," said Sjogren. "It is typical of the work that Prof. Zakhor has done for AFOSR/Air Force Research Laboratory over the years, that she meets these challenges head-on, and in most cases solves the problem sufficient to demonstrate a prototype system."

Sjogren noted that what is left for others is to examine the approach that was taken, and extend the techniques that were brought in, to a wider context.

"We are gratified to see how technology can drive science in a domain of critical relevance to practical defense implementations," he said.

Even though they don't have all the answers yet, the scientists are boldly looking ahead to how this technology can be used in the future when they plan to model entire buildings and develop interactive viewers that allow users to virtually walk through buildings before they are there in person.

In the meantime, the cutting-edge technology is being successfully implemented on campus.

"We have already generated 3D models of two stories of the electrical engineering building at UC Berkeley, including the stairway and that is a first," said Zakhor.

ABOUT AFOSR:
The Air Force Office of Scientific Research (AFOSR), located in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory (AFRL), AFOSR's mission is to discover, shape and champion basic science that profoundly impacts the future Air Force.

Maria Callier | EurekAlert!
Further information:
http://www.afosr.af.mil

More articles from Power and Electrical Engineering:

nachricht A paper battery powered by bacteria
21.08.2018 | American Chemical Society

nachricht Converting wind power for storage purposes
21.08.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>