Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology: Feel the pressure

29.03.2012
Nanowires have superior electrical and mechanical properties and can be put to good use in pressure sensors
Miniaturized pressure sensors are widely used in mechanical and biomedical applications, for example, in gauging fuel pressure in cars or in monitoring blood pressure in patients. Woo-Tae Park and co-workers at the A*STAR Institute of Microelectronics1 have now developed a nanowire-based sensor that is so sensitive it can detect even very low pressure changes.

Most miniaturized pressure sensors harness the intrinsic properties of piezoresistive materials. A structural change in such a material, induced for example by an external force, results in a complementary change in its electrical resistance. However, piezoresistive materials have two major limitations. Firstly, these materials are not particularly sensitive, which means that low pressures produce weak electronic signals. Secondly, these materials can generate a lot of electrical noise, which can mask the true measurement signal. An ideal transducer should have a high signal-to-noise ratio (SNR). Park and his co-workers have now used nanowires to create a pressure sensor with enhanced SNR properties.

Previous research has shown that nanowires can exhibit high piezoresistive effects because of their small size. To take advantage of this, Park and his co-workers used state-of-the-art material processing techniques to suspend two silicon nanowires between two electrodes on a silicon-on-insulator substrate. Each wire was a few hundred nanometers long and approximately 10 nanometers wide. They were covered in amorphous silicon which both protected them and acted as an electrical connection, referred to as the gate. The researchers attached to this a circular diaphragm: a two-layer membrane of silicon nitride and silicon dioxide. Any stress in the diaphragm was therefore transferred to the nanowire structure.

The team characterized their sensor by passing a controlled stream of air across it. Ammeters measured the current flowing through the device as a known electrical potential was applied across the two electrodes. An additional voltage, the gate bias, was also applied between one of the electrodes and the gate. Park and his co-workers demonstrated that they could achieve a four-fold increase in pressure sensitivity by reversing the direction of this gate bias. This, they believe, is a result of the bias voltage controlling the confinement of the electrons within the nanowire channels — a concept commonly employed in so-called field-effect transistors. An assessment of the device noise characteristics also showed significant improvements with the right choice of operating parameters.

Park and his co-workers believe that the device provides a promising route for applications requiring miniaturized pressure sensors that use little power.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht The new technology will significantly enhance energy harvest from PV modules
12.06.2019 | Estonian Research Council

nachricht NextGenBat: Basic research for mobile energy storage systems
12.06.2019 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>