Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Many antennas, multiple benefits

26.01.2015

Deploying many low-power, compact antenna nodes to handle cellular traffic can make wireless communication more reliable and adaptable

A concept that balances large-scale installations of low-cost and low-power antennas to boost cellular coverage in difficult environments will also provide better connectivity to more users. Developed by A*STAR, this new architecture for wireless communications can help service providers meet growing demands for increased network capacity and improved energy efficiency [1].


By combining large distributions of compact antenna nodes with fast fiber optic communication, researchers have developed a new wireless infrastructure ready for intense future demands. © 2014 A*STAR Institute for Infocomm Research

Jingon Joung, Yeow Chia and Sumei Sun from the A*STAR Institute for Infocomm Research in Singapore sought to combine two state-of-the-art wireless technologies into a novel type of antenna system. The first technology, known as large-scale multiple-input multiple-output (L-MIMO), uses numerous ‘co-located’ antennas to significantly reduce relative noise levels inside devices. The second, called distributed-antenna systems (DAS), replaces conventional high-power antennas with strategically placed compact nodes that can split up and transmit signals more efficiently due to improved line-of-sight pathways.

The team’s strategy, known as large-scale distributed-antenna systems (L-DAS), seeks to implement DAS with a massive installation base, as seen with MIMO antennas (see image). To realize this goal, however, required a way to evaluate the costs and benefits associated with this innovative infrastructure — simply increasing the number of antenna nodes does not automatically improve wireless network efficiency.

Using a complex computer simulator, the researchers quantified the performances of multi-user L-DAS networks by evaluating their energy efficiencies (that is, the number of bits decoded per joule). According to Joung, modeling energy efficiency is challenging because L-DAS antennas communicate in two ways — wirelessly or through fiber-optic cables — and each channel has different and often proprietary power requirements.

“Another challenge is implementing real-world parameters in the L-DAS network simulator,” says Joung. “Many of these parameters have a large dynamic range, from a few quadrillionths of a watt to tens of watts, which can cause precision issues with the computer simulation.”

At first glance, the original ‘naive’ L-DAS setup seemed to have a greater energy consumption than the L-MIMO system with co-located antennas. However, the team identified four key attributes that could dramatically enhance the L-DAS energy efficiency: proper antenna selection, clustering of antennas, pre-coding to improve channel quality, and computerized power control. With these improvements, the L-DAS network outperformed both L-MIMO and DAS technologies.

The group is now looking to the future. “Heterogeneous network (HetNet) architectures that can seamlessly support different 2G, 3G, 4G or WLAN networks are strong candidates for future communication networks,” says Joung. “Because L-DAS architecture can be applied to many HetNet applications, this work can help ensure a gentle and smooth replacement of real-life networks with HetNet.”

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research

Reference:
[1] Joung, J., Chia, Y. K. & Sun, S. Energy-efficient, large-scale distributed-antenna system (L-DAS) for multiple users. IEEE Journal of Selected Topics in Signal Processing 8, 954–965 (2014).


Associated links
A*STAR article

A*STAR Research | ResearchSEA

More articles from Power and Electrical Engineering:

nachricht Nano-scale process may speed arrival of cheaper hi-tech products
09.11.2018 | University of Edinburgh

nachricht Nuclear fusion: wrestling with burning questions on the control of 'burning plasmas'
25.10.2018 | Lehigh University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>