Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maize hybrid looks promising for biofuel

21.02.2012
Scientists at the University of Illinois at Urbana-Champaign have identified a new contender in the bioenergy race: a temperate and tropical maize hybrid.
Their findings, published in GCB Bioenergy, show that the maize hybrid is potentially capable of producing ethanol from biomass (plant material used for biofuel production) at levels equal to or greater than ethanol produced from grain harvested from current commercial maize hybrids.

"Our maize hybrid, when grown using the same amount of fertilizer as commercial grain hybrids, produced 15-20% more biomass than the commercial hybrids." said Dr. Frederick Below, Professor of Crop Physiology at the University of Illinois.

The scientists selected plants with different genetic combinations created from a hybridization of temperate and tropical maize in order to incorporate beneficial characteristics of both tropical and temperate maize. Accustomed to a tropical climate, the tropical parent plant experiences a much longer growing season in the Midwest than temperate varieties. Temperate maize minimizes the negative traits of tropical maize such as disease and pest vulnerability while maximizing positive traits such as drought tolerance. Both parent plants combine to form a hybrid that grows larger and accumulates more stalk sugars than conventional grain hybrids, factors that increase ethanol output.

The scientists discovered that the hybrids are capable of producing as much ethanol per acre as maize currently grown for ethanol made from grain, but the hybrids require less input such as fertilizers like nitrogen and the ethanol could be produced from the vegetative plant material.

According to Dr. Below, "the temperate and tropical maize hybrid has the potential to produce the same amount of ethanol as commercial grain hybrids, but with lower nitrogen fertilizer requirements. This difference makes the hybrid more energy efficient and can result in a more sustainable environmental life cycle."

Maize is often criticized by the scientific community as a poor choice for ethanol given the toll fertilizers can have on the environment. But as Dr. Below and his team have shown, the hybrid will significantly lessen the need for fertilizer application and provide an alternative, more environmentally sustainable feedstock for biofuel production.

While this new hybrid may be in its early stages, a wealth of information about maize has been long established, allowing for rapid improvements.

This paper is published in GCB Bioenergy. To request a copy contact GCB-Bioenergy@igb.uiuc.eduor 217-333-9651.

Rhea Kressman | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Power and Electrical Engineering:

nachricht Researchers measure near-perfect performance in low-cost semiconductors
18.03.2019 | Stanford University

nachricht Robot arms with the flexibility of an elephant’s trunk
18.03.2019 | Universität des Saarlandes

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>