Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New High Speed Computed Tomography System from GE Brings up to 100% 3D Inspection to the Production Line

14.06.2012
The new speed|scan atlineCT system from Inspection Technologies business of GE Measurement & Control brings high speed 3D Computed Tomography (CT) for the first time directly to the production line for the up to 100% inspection of castings.

By incorporating much of the technology which has been proven by GE in the healthcare sector over four decades, the new CT system is up to 200 times faster than conventional 3D CT inspection and offers important additional quality control features, including exact 3D defect location and classification, wall thickness analysis to allow dimensional control and actual - CAD data comparison.


Fast atlineCT with GE’s new speed|scan CT System allows up to 100% 3D inspection of castings and composite samples


The scanned samples are automatically analysed with GE’s newly developed high-speed 3D evaluation algorithms

GE’s speed|scan atlineCT is suitable for any production line where there is a constant requirement for stringent quality control of light metal castings or composite structures but is particularly targeted at the automotive and aerospace sectors.

“The new inspection system can reduce typical scan times for an engine cylinder head from several hours with conventional fan beam CT to less than two minutes,” says Oliver Brunke, Lead CT Product Manager for the Inspection Technologies business, “This means that all of the benefits of 3D compared with 2D inspection can now be realized at the production line. These include benefits such as reduction in reject rate by analyzing position and form of defects which may be machined out by subsequent processes to prevent unnecessary failure sentencing and by accurately checking work piece geometry and dimensions, so that form and size deviations can be easily identified and corrected at an early stage of the production process. Finally, depending on their size and absorption behaviour even foreign materials like inclusions or sand core remains may be detected, located and classified according to its density and position.”

The modified GE medical scanner in speed|scan atlineCT system uses Helix multi-line technology, where a gantry with an X-ray tube and corresponding multi-line X-ray detector rotates around the work piece, which is being passed through the gantry on a conveyor belt. The work pieces are scanned at speeds of up to several millimeters per second, and are automatically assessed with the aid of GE’s own speed-optimized 3D Automatic Defect Recognition (ADR) algorithms. Inspection is carried out using a new workflow concept, where the work piece is loaded onto the conveyor belt of the system which is located adjacent to the production line. The continuous CT scan takes place and the software begins volume reconstruction and optimization. The work piece is unloaded and a new work piece placed on the belt for scanning. At the same time, 3D ADR is taking place on the first work piece volume to allow rapid sentencing. The second and subsequent work pieces then follow the same procedure.

The new speed|scan atlineCT inspection system can handle work pieces up 300x400x800mm in size and up to 50kg in weight and its robust design allows 24/7 operation. Its containing cabinet is suitable for industrial environments with dust protection and thermal isolation and the radiation safety cabinet offers full protective installation according to the German RÖV standard and the US 21 CFR 1020.40 standard.

http://ge-mcs.com/speedscan

About Measurement & Control
Measurement & Control is a leading innovator in advanced, sensor-based measurement, non-destructive testing and inspection and condition monitoring, delivering accuracy, productivity and safety to a wide range of industries, including oil & gas, power generation, aerospace, transportation and healthcare. It has over 40 facilities in 25 countries and is part of GE Oil & Gas. For further information, visit www.ge-mcs.com
About GE
GE (NYSE: GE) works on things that matter. The best people and the best technologies taking on the toughest challenges. Finding solutions in energy, health and home, transportation and finance. Building, powering, moving and curing the world. Not just imagining. Doing. GE works. For more information, visit the company's website at www.ge.com.
Customer Contact
Dr.-Ing. Oliver Brunke
Dipl.-Phys.
Product Manager CT Systems
GE Sensing & Inspection Technologies GmbH
Niels-Bohr-Straße 7
31515 Wunstorf
Germany
T +49 5031 172 142
M +49 172 4118419
F +49 5031 172 299
E Oliver.Brunke@ge.com
http://ge-mcs.com/speedscan
Media Contact
Dr. Dirk Neuber | Beate Prüß
GE Sensing & Inspection Technologies GmbH
Niels-Bohr-Straße 7
31515 Wunstorf
Germany
+49 5031 172-124 | -103
dirk.neuber@ge.com | beate.pruess@ge.com

Dr. Dirk Neuber | phoenix|x-ray
Further information:
http://ge-mcs.com/speedscan
http://www.phoenix-xray.com

More articles from Power and Electrical Engineering:

nachricht Factory networks energy, buildings and production
12.07.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Manipulating single atoms with an electron beam
10.07.2018 | University of Vienna

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>