Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heating and cooling with waste heat from industry

08.07.2015

Heating and cooling in the future will utilise energy gained from waste heat which will be distributed at low temperature using district heating and cooling networks. It will thus make use of the heat wasted by cooling systems in supermarkets and fruit storage facilities which up to now has simply been released untapped into the atmosphere.

South Tyrol’s EURAC Institute for Renewable Energy is exploring this new technology in the “FLEXYNETS” project which is financed to the tune of two million euros by the European research programme “Horizon 2020”. Yesterday, on the 7th July, the project partners finally met at EURAC to set things in motion.


At present district heating grids run via high temperatures of around 90 °C. To heat individual buildings, the networks have to connect to sizeable thermal plants, such as block thermal plants or waste incinerating plants. The technology which will now be researched by the South Tyrol EURAC Institute for Renewable Energy on the other hand runs at temperatures between 10 and 20°C.

This means that the district heating grids can be supplied with energy from sources running at much lower temperatures than previously. “We are working on developing district heating and cooling systems for tomorrow. We do not want to replace existing systems, but rather are seeking to integrate them into new concepts.

Space heating, generated for example from a waste incinerating plant, is intended to be supplemented by heat generated in various everyday processes and which is currently wasted,” explained Roberto Fedrizzi, scientist at the EURAC Institute for Renewable Energy and Director of the FLEXYNETS project. “By using low temperatures when distributing heat, we reduce the present huge heat loss in the underground distribution pipelines, which will make the whole grid much more efficient in the future,” said Fedrizzi.

According to the experts, the energy consumption for heating and hot water could be reduced by 80%, and for cooling buildings by 40%. Across Europe, this would amount to a reduction of 5 million tonnes of CO2 emissions by 2030.

The first phase of the three-year project will concentrate on developing the technology. There will then follow a test phase which is due to begin in summer 2016.

“For this first phase we will set up a laboratory in the Technology Park in Bozen-Bolzano simulating a small-scale district heating and cooling network. This will enable us to simulate and test different control strategies as well as operating scenarios,” added Roberto Fedrizzi.

The project’s third phase is dedicated to devising incentive measures for exploiting waste heat and strategies for integrating this new technology into already existing municipal systems. For this purpose, two working groups will be set up which will include district heating experts as well as representatives of the municipalities such as energy managers.

The FLEXYNETS Project will be managed by EURAC. Project partners from the whole of Europe attended the initial meeting in Bozen-Bolzano on July 7th and 8th: the University of Stuttgart, along with agencies and companies specialising in district heating systems from Italy, Spain, Germany and Denmark.

Weitere Informationen:

http://www.eurac.edu/en/research/technologies/renewableenergy/Pages/default.aspx - EURAC Institute for Renewable Energy

Laura Defranceschi | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht The role of Sodium for the Enhancement of Solar Cells
17.07.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Behavior-influencing policies are critical for mass market success of low carbon vehicles
17.07.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>