Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer ISE’s PV-TEC Pioneers New Technologies and Improves Solar Cell Efficiency

12.09.2019

From industry-driven solar cells with efficiency values of more than 22 percent to effective new metallization processes for contacting solar cells — the Photovoltaic Technology Evaluation Center (PV-TEC) at the Fraunhofer Institute for Solar Energy Systems ISE in Freiburg has enjoyed numerous technological successes. The research factory, which was rebuilt and significantly expanded in 2018, is the largest R&D center for crystalline silicon solar cells in Europe.

“We are thrilled to be able to present such outstanding results so soon after the inauguration of our PV-TEC,” said Dr. Ralf Preu, Division Director of PV Production Technology at Fraunhofer ISE. The laboratory operated as a research factory from its inception in 2006 until it was destroyed by fire in February of 2017.


In-line etching equipment for ozone-based wafer purification and single-sided emitter removal in the front-end division of Fraunhofer ISE’s Photovoltaic Technology Evaluation Center PV-TEC.

© Fraunhofer ISE / Dirk Mahler


The back-end division of Fraunhofer ISE’s rebuilt Photovoltaic Technology Evaluation Center PV-TEC.

© Fraunhofer ISE / Dirk Mahler

Rebuilding was completed in record time and the center reopened one year ago, providing one-of-a-kind infrastructure for industry-driven solar cell research, including research and development for processing equipment.

“Thanks to the rapid rebuilding process and our innovative infrastructure and equipment, we have the opportunity to usher in the future of photovoltaics and cement our position as a leading international developer of PV technology,” added Preu.

More space for technological innovation

Fraunhofer ISE used the rebuilding process to restructure the laboratory, creating front-end and back-end divisions housed at two separate locations. The reorganization is intended to better meet the growing technical requirements for the various processes in terms of infrastructure and indoor climate, while at the same time creating space for new production lines and technologies.

Today, around 180 employees develop manufacturing processes across 2400 square meters of technical facilities to make the high-efficiency solar cell concepts of tomorrow a reality. They collaborate with industrial partners from Germany and across Europe on cost-effective processes for the next generation of solar cell technology, with the aim of improving cell efficiency and energy yields, increasing throughputs in process technology and implementing current trends such as building- or product-integrated photovoltaics.

Current research is focusing on cost-effective processes for monocrystalline PERC solar cells that achieve efficiency values of more than 22 percent and can be implemented on an industrial scale, as well as solar cells based on passivated contacts (TOPCon, heterojunction), including tandem solar cell designs. Concepts for digitalizing solar cell manufacturing (digital twins, self-learning machines, predictive maintenance) also undergo research and testing for the next generation of production equipment.

Key areas of research focus

The front-end technical center, located on Hans-Bunte-Strasse in northern Freiburg, is devoted to wafer characterization, wet-chemical etching, doping and processes for surface coatings. “Our work here focuses on upscaling high-efficiency solar cell technologies and integrating automation concepts that are essential for mass production so that we can present the photovoltaics industry with ready-to-use solutions,” explains Dr. Jochen Rentsch, Head of the Department of Production Technology – Surfaces and Interfaces at Fraunhofer ISE. New techniques for quickly and carefully handling silicon wafers between process steps are also of interest, given the wafers’ sensitive surfaces and ever-increasing thinness.

The back-end department, housed in the Solar Info Center on Emmy-Noether-Strasse, concentrates on printing and laser technologies and the characterization of solar cells. Along with fully automated production facilities, it is equipped with state-of-the-art laboratories for the development of printing and laser processes as well as the analysis of mono- and bifacial solar cells.

“A key focus of our research is developing superfine and precisely positioned contact structures in order to optimize material use in solar cell production and improve efficiency,” explains Dr. Jan Nekarda, Head of the Department of Production Technology – Structuring and Metallization.

To characterize the cells, a machine was built to perform automatic measurements of high-efficiency solar cells in various formats quickly and extremely precisely, even under bifacial illumination.

In addition to photovoltaic applications, PV-TEC develops technologies for other industries, for example coating technologies for fuel cell membranes or customized structuring processes for electronics.

Technological achievements at the new PV-TEC:

Busbar-free PERC cells with an efficiency value of 21.9 percent: The busbar-free solar cell was developed entirely in-house in an industry-driven process. It is made of monocrystalline silicon with an aluminum oxide passivation layer on the rear side and a homogeneous emitter on the front side.

Bifacial pSPEER shingle solar cells with a power density of 235 W/m2 (font-side irradiation 1000 W/m2, rear-side irradiation 100 W/m2). This advance in PERC technology makes use of patented passivated edge technology to improve energy yields by combining the low-loss separation of solar cells with shingle technology, which minimizes shading on both sides of the cell.

TOPCon (tunnel oxide passivated contact) cells with 22.5 percent efficiency: The cell was manufactured using Fraunhofer ISE’s own process. TOPCon, a charge carrier-selective contact developed at the institute, is based on an ultra-thin tunnel oxide in combination with a thin silicon layer and enables excellent charge carrier selectivity.

Weitere Informationen:

https://www.ise.fraunhofer.de/en/press-media/press-releases/2019/fraunhofer-ise-...

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Power and Electrical Engineering:

nachricht "Flying fish" robot can dive and fly
12.09.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht World record for tandem perovskite-CIGS solar cell
09.09.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

Im Focus: A molecular 'atlas' of animal development

Researchers from the University of Pennsylvania provide a molecular map of every cell in a developing animal embryo

In a paper in Science this week, Penn researchers report the first detailed molecular characterization of how every cell changes during animal embryonic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Black hole at the center of our galaxy appears to be getting hungrier

12.09.2019 | Physics and Astronomy

Gene therapy helps functional recovery after stroke

12.09.2019 | Life Sciences

Fraunhofer ISE’s PV-TEC Pioneers New Technologies and Improves Solar Cell Efficiency

12.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>