Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrode-fitted microscope points to better designed devices that make fuel from sunlight

08.10.2019

University of Oregon researchers find that smaller catalytic nanoparticles may be vital for many kinds of devices that convert solar energy into chemical fuels like hydrogen gas

Using an atomic-force microscope fitted with an electrode tip 1,000 times smaller than a human hair, University of Oregon researchers have identified in real time how nanoscale catalysts collect charges that are excited by light in semiconductors.


This illustration depicts a specially fitted electrode tip on an atomic force microscope providing a nanoscale view of activity occurring at the interface of a single-crystal silicon wafer coated with metallic nickel nanoparticles.

Image by Shannon Boettcher

As reported in the journal Nature Materials, they discovered that as the size of the catalytic particles shrinks below 100 nanometers the collection of excited positive charges (holes) becomes much more efficient than the collection of excited negative charges (electrons). This phenomenon prevents the excited positive and negative charges from recombining and thus increases the system efficiency.

The findings open the door to improving systems that use light to make chemicals and fuels, for example by splitting water to make hydrogen gas or by combining carbon dioxide and water to make carbon-based fuels or chemicals, said Shannon W. Boettcher, a professor in the UO's Department of Chemistry and Biochemistry and member of the university's Materials Science Institute.

"We found a design principle that points to making catalytic particles really small because of the physics at the interface, which allows one to increase efficiency," Boettcher said. "Our technique allowed us to watch the flow of excited charges with nanometer-scale resolution, which is relevant for devices that use catalytic and semiconductor components to make hydrogen that we can store for use when the sun is not shining."

In the research, Boettcher's team used a model system consisting of a well-defined single-crystal silicon wafer coated with metallic nickel nanoparticles of different sizes. The silicon absorbs sunlight and creates excited positive and negative charges. The nickel nanoparticles then selectively collect the positive charges and speed up the reaction of those positive charges with electrons in water molecules, pulling them apart.

Previously, Boettcher said, researchers could only measure the average current moving across such a surface and the average voltage generated by the light hitting the semiconductor. To look closer, his team collaborated with Bruker Nano Surfaces, the manufacturer of the UO's atomic force microscope that images the topography of surfaces by tapping a sharp tip over it - much like a blind person tapping their cane - to develop the techniques needed to measure voltage at the nanoscale.

As the electrode tip touched each of the nickel nanoparticles, the researchers were able to record the buildup of holes by measuring a voltage - similar to how one tests the voltage output from a battery.

Surprisingly, the voltage measured as the device was operating depended strongly on the size of the nickel nanoparticle. Small particles were able to better select for the collection of excited positive charges over negative charges, reducing the rate of charge recombination and generating higher voltages that better split apart water molecules.

A key, Boettcher said, is that oxidation at the nickel nanoparticle surface leads to a barrier, much like overlapping ridges in a mountain valley, that prevents the negatively charged electrons from flowing to the catalyst and annihilating the positively charged holes. This effect has been termed "pinch-off" and was hypothesized to occur in solid-state devices for decades but never before directly observed in fuel-forming photoelectrochemical systems.

"This new technique is a general means to investigate the state of nanoscale features in electrochemical environments," said the study's lead author Forrest Laskowski, who was a National Science Foundation graduate research fellow in Boettcher's lab. "While our results are useful for understanding photoelectrochemical energy storage, the technique could more broadly be applied to study electrochemical processes in actively-operating systems such as fuels cells, batteries, or even biological membranes."

###

Laskowski is now a postdoctoral researcher at the California Institute of Technology in Pasadena.

Co-authors with Boettcher and Laskowski were: Sebastion Z. Oener, a postdoctoral researcher working under a fellowship from the Deutsche Forschungsgemeinschaft (German Research Foundation); Michael R. Nellist, a doctoral student now at Intel Corp. in Hillsboro, Oregon; Adrian M. Gordon, who earned a bachelor's degree this year and is now a doctoral student at the University of Minnesota; David C. Bain, an undergraduate student from New York's St. Lawrence University who participated in the UO's summer Research Experience for Undergraduates program and is now pursuing a doctorate at the University of California, Berkeley; and UO doctoral student Jessica L. Fehrs.

A grant from the U.S. Department of Energy primarily funded the research, while the purchase of the atomic force microscope was funded by the National Science Foundation. Instrumentation used in the project is based in the Center for Advanced Materials Characterization in Oregon, a UO-based high-tech extension service available to researchers worldwide, and the Oregon Rapid Materials Prototyping Facility, funded by the Murdock Trust.

Source: Shannon Boettcher, associate professor, Department of Chemistry and Biochemistry and Materials Science Institute, 541-346-2543, swb@uoregon.edu

Note: The UO is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. There also is video access to satellite uplink and audio access to an ISDN codec for broadcast-quality radio interviews.

Links:

About Shannon Boettcher: https://boettcher.uoregon.edu/dr-shannon-boettcher/dr-shannon-boettcher/

Boettcher's Solar Materials and Electrochemistry Laboratory: https://boettcher.uoregon.edu/

Department of Chemistry and Biochemistry: https://boettcher.uoregon.edu/dr-shannon-boettcher/dr-shannon-boettcher/

Materials Science Institute: https://materialscience.uoregon.edu/

Media Contact

Jim Barlow
jebarlow@uoregon.edu
541-346-3481

 @uoregon

http://around.uoregon.edu 

Jim Barlow | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41563-019-0488-z

More articles from Power and Electrical Engineering:

nachricht Integrated time magnifier for the detection and measurement of very short signals
07.10.2019 | Technische Universität Braunschweig

nachricht Researchers at Mainz University synthesize new liquid crystals that will allow the directed transmission of electricity
01.10.2019 | Johannes Gutenberg-Universität Mainz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

Im Focus: A fortress of ice and snow

MOSAiC expedition begins its ice drift on a floe at 85 degrees north and 137 degrees east

After only a few days of searching, experts from the MOSAiC expedition have now found a suitable ice floe, where they will set up the research camp for their...

Im Focus: Jellyfish's 'superpowers' gained through cellular mechanism

Jellyfish are animals that possess the unique ability to regenerate body parts. A team of Japanese scientists has now revealed the cellular mechanisms that give jellyfish these remarkable "superpowers."

Their findings were published on August 26, 2019 in PeerJ.

"Currently our knowledge of biology is quite limited because most studies have been performed using so-called model animals like mice, flies, worms and fish...

Im Focus: Many gas giant exoplanets waiting to be discovered

There is an as-yet-unseen population of Jupiter-like planets orbiting nearby Sun-like stars, awaiting discovery by future missions

There is an as-yet-unseen population of Jupiter-like planets orbiting nearby Sun-like stars, awaiting discovery by future missions like NASA's WFIRST space...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Axion particle spotted in solid-state crystal

08.10.2019 | Physics and Astronomy

Striking a balance: a mechanism to control autoimmunity

08.10.2019 | Life Sciences

Physicists from Ulm put Einstein to the test - Atomic clock on space-time voyage: a quantum-mechanical twin paradox

07.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>