Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of MEMS sensor chip equipped with ultra-high quality diamond cantilevers

20.12.2018

Progress in the development of highly reliable and sensitive diamond MEMS sensors

A NIMS-led research group succeeded in developing a high-quality diamond cantilever with among the highest quality (Q) factor values at room temperature ever achieved.


Micrographs of the diamond MEMS chip developed through this research and one of the diamond cantilevers integrated into the chip

Credit: NIMS

The group also succeeded for the first time in the world in developing a single crystal diamond microelectromechanical systems (MEMS) sensor chip that can be actuated and sensed by electrical signals.

These achievements may popularize research on diamond MEMS with significantly higher sensitivity and greater reliability than existing silicon MEMS.

MEMS sensors--in which microscopic cantilevers (projecting beams fixed at only one end) and electronic circuits are integrated on a single substrate--have been used in gas sensors, mass analyzers and scanning microscope probes.

For MEMS sensors to be applied in a wider variety of fields, such as disaster prevention and medicine, their sensitivity and reliability need to be further increased.

The elastic constant and mechanical constant of diamond are among the highest of any material, making it promising for use in the development of highly reliable and sensitive MEMS sensors.

However, three-dimensional microfabrication of diamond is difficult due to its mechanical hardness. This research group developed a "smart cut" fabrication method which enabled microprocessing of diamond using ion beams and succeeded in fabricating a single crystal diamond cantilever in 2010.

However, the quality factor of the diamond cantilever was similar to that of existing silicon cantilevers because of the presence of surface defects.

The research group subsequently developed a new technique enabling atomic-scale etching of diamond surfaces. This etching technique allowed the group to remove defects on the bottom surface of the single crystal diamond cantilever fabricated using the smart cut method.

The resulting cantilever exhibited Q factor values--a parameter used to measure the sensitivity of a cantilever--greater than one million; among the world's highest. The group then formulated a novel MEMS device concept: simultaneous integration of a cantilever, an electronic circuit that oscillates the cantilever and an electronic circuit that senses the vibration of the cantilever.

Finally, the group developed a single crystal diamond MEMS chip that can be actuated by electrical signals and successfully demonstrated its operation for the first time in the world. The chip exhibited very high performance; it was highly sensitive and capable of operating at low voltages and at temperatures as high as 600°C.

These results may expedite research on fundamental technology vital to the practical application of diamond MEMS chips and the development of extremely sensitive, high-speed, compact and reliable sensors capable of distinguishing masses differing by as light as a single molecule.

###

This research project was carried out by Meiyong Liao (Principal Researcher, Research Center for Functional Materials [RCFM], NIMS), Haihua Wu (Trainee, RCFM, NIMS), Tokuyuki Teraji (Chief Researcher, RCFM, NIMS), Liwen Sang (Independent Scientist, International Center for Materials Nanoarchitectonics, NIMS), Yasuo Koide (Director of the Research Network and Facility Services Division, NIMS) and Masaya Toda (Associate Professor, Tohoku University). This research was in part supported by the JSPS Grants-in-Aid for Scientific Research (B) (grant number: 15H03999) and the TIA collaborative research program "Kakehashi." This study was published in Physical Review Materials as an Editors' Suggestion article on September 28, 2018, local time, and in the online version of Advanced Materials Technologies on October 29, 2018, local time.

Contacts

(Regarding this research)

Meiyong Liao,
Principal Researcher,
Research Center for Functional Materials [RCFM],
National Institute for Materials Science
TEL: +81-29-860-4508
E-Mail: Meiyong.Liao@nims.go.jp

(For general inquiries)

Public Relations Office
National Institute for Materials Sciences
Tel: +81-29-859-2026
Fax: +81-29-859-2017
E-Mail: pressrelease@ml.nims.go.jp

Media Contact

Yasufumi Nakamichi
NAKAMICHI.Yasufumi@nims.go.jp
81-298-592-105

http://www.nims.go.jp/eng/index.html 

Yasufumi Nakamichi | EurekAlert!
Further information:
https://www.nims.go.jp/eng/news/press/2018/10/201810300.html
http://dx.doi.org/10.1103/PhysRevMaterials.2.090601

More articles from Power and Electrical Engineering:

nachricht Saving energy by taking a close look inside transistors
10.01.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Tandem Solar Cells – Record Efficiency for Silicon-based Multi-junction Solar Cell
08.01.2019 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>