Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catching some rays: Organic solar cells make a leap forward

15.06.2012
Drawn together by the force of nature, but pulled apart by the force of man – it sounds like the setting for a love story, but it is also a basic description of how scientists have begun to make more efficient organic solar cells.
At the atomic level, organic solar cells function like the feuding families in Romeo and Juliet. There’s a strong natural attraction between the positive and negative charges that a photon generates after it strikes the cell, but in order to capture the energy, these charges need to be kept separate.

When these charges are still bound together, they are known to scientists as an exciton. “The real question that this work tries to answer is how to design a material that will make splitting the exciton require less energy,” said senior chemist Lin Chen of the U.S. Department of Energy’s (DOE) Argonne National Laboratory.

Excitons can be thought of as a sort of “quasiparticle,” Chen said, because they exhibit certain unique behaviors. When the two charged regions of the exciton – the electron and a region known as a “hole” – are close together, they are difficult to pry apart.

“The closer the hole and the electron regions are inside an exciton, the more likely they are to recombine without generating electricity,” Chen said.

When energy is added to the system, however, the charges begin to separate, rendering the electrons and holes completely free and eventually allowing for the possibility of generating current and extracting electricity

“The closer the hole and the electron regions are inside an exciton, the more likely they are to recombine without generating electricity,” Chen said. “But if they are already ‘pre-separated,’ or polarized, the more likely they are to escape from this potential trap and become effective charge carriers.”

In the new experiment, Chen and her colleagues examined how four different molecules in the polymer layer in the middle of a solar cell generated different exciton dynamics. They discovered that more heavily polarized excitons yielded more efficient polymer-based solar cells.

“If the conventional exciton, right after it is generated, contains the hole and electron in almost the same location, these new materials are generating an exciton that is much more polarized at the beginning,” Chen said. Currently, the collaborative team is exploring new materials for high-efficiency organic solar cells based on these findings.

Organic solar cells still have a ways to go to get close to the efficiency of their inorganic, silicon-based competitors, but they remain much more attractive from a cost perspective. Further research into the electronic dynamics of organic photovoltaics is essential to improving their efficiency and thus making solar power cost-competitive with conventional energy sources, Chen said.

The work has been recently published in the Journal of the American Chemical Society.

Chen’s work on organic solar cells represents one of several avenues of solar energy research currently underway as part of the Argonne-Northwestern Solar Energy Research Center (ANSER), a collaborative enterprise between Argonne and Northwestern University that seeks to investigate a number of possible improvements to the current generation of photovoltaic devices. ANSER is one of 46 Energy Frontier Research Centers established in 2009 by DOE’s Office of Science at universities, national laboratories, and other institutions across the nation to advance basic research on energy.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

Jared Sagoff | EurekAlert!
Further information:
http://science.energy.gov
http://www.anl.gov

More articles from Power and Electrical Engineering:

nachricht A spreadable interlayer could make solid state batteries more stable
19.05.2020 | Chalmers University of Technology

nachricht A new, highly sensitive chemical sensor uses protein nanowires
14.05.2020 | University of Massachusetts Amherst

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Inexpensive retinal diagnostics via smartphone

25.05.2020 | Medical Engineering

Smart machine maintenance: New AI system also detects unknown faults

25.05.2020 | Information Technology

Artificial Intelligence for optimized mobile communication

25.05.2020 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>