Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catching some rays: Organic solar cells make a leap forward

15.06.2012
Drawn together by the force of nature, but pulled apart by the force of man – it sounds like the setting for a love story, but it is also a basic description of how scientists have begun to make more efficient organic solar cells.
At the atomic level, organic solar cells function like the feuding families in Romeo and Juliet. There’s a strong natural attraction between the positive and negative charges that a photon generates after it strikes the cell, but in order to capture the energy, these charges need to be kept separate.

When these charges are still bound together, they are known to scientists as an exciton. “The real question that this work tries to answer is how to design a material that will make splitting the exciton require less energy,” said senior chemist Lin Chen of the U.S. Department of Energy’s (DOE) Argonne National Laboratory.

Excitons can be thought of as a sort of “quasiparticle,” Chen said, because they exhibit certain unique behaviors. When the two charged regions of the exciton – the electron and a region known as a “hole” – are close together, they are difficult to pry apart.

“The closer the hole and the electron regions are inside an exciton, the more likely they are to recombine without generating electricity,” Chen said.

When energy is added to the system, however, the charges begin to separate, rendering the electrons and holes completely free and eventually allowing for the possibility of generating current and extracting electricity

“The closer the hole and the electron regions are inside an exciton, the more likely they are to recombine without generating electricity,” Chen said. “But if they are already ‘pre-separated,’ or polarized, the more likely they are to escape from this potential trap and become effective charge carriers.”

In the new experiment, Chen and her colleagues examined how four different molecules in the polymer layer in the middle of a solar cell generated different exciton dynamics. They discovered that more heavily polarized excitons yielded more efficient polymer-based solar cells.

“If the conventional exciton, right after it is generated, contains the hole and electron in almost the same location, these new materials are generating an exciton that is much more polarized at the beginning,” Chen said. Currently, the collaborative team is exploring new materials for high-efficiency organic solar cells based on these findings.

Organic solar cells still have a ways to go to get close to the efficiency of their inorganic, silicon-based competitors, but they remain much more attractive from a cost perspective. Further research into the electronic dynamics of organic photovoltaics is essential to improving their efficiency and thus making solar power cost-competitive with conventional energy sources, Chen said.

The work has been recently published in the Journal of the American Chemical Society.

Chen’s work on organic solar cells represents one of several avenues of solar energy research currently underway as part of the Argonne-Northwestern Solar Energy Research Center (ANSER), a collaborative enterprise between Argonne and Northwestern University that seeks to investigate a number of possible improvements to the current generation of photovoltaic devices. ANSER is one of 46 Energy Frontier Research Centers established in 2009 by DOE’s Office of Science at universities, national laboratories, and other institutions across the nation to advance basic research on energy.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

Jared Sagoff | EurekAlert!
Further information:
http://science.energy.gov
http://www.anl.gov

More articles from Power and Electrical Engineering:

nachricht A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers
22.05.2019 | Tokyo Institute of Technology

nachricht Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth
20.05.2019 | DOE/Princeton Plasma Physics Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>