Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Altaeros Energies Achieves Breakthrough in High Altitude Wind Power

29.03.2012
Altaeros Energies, a wind energy company formed out of MIT, announced today that it has demonstrated high altitude power production from an automated prototype of its airborne wind turbine.

The company recently completed testing of a 35-foot scale prototype of the Altaeros Airborne Wind Turbine (AWT) at the Loring Commerce Center in Limestone, Maine. The prototype, fabricated in partnership with Doyle Sailmakers of Salem, Massachusetts, achieved several key milestones.


Altaeros Airborne Wind Turbine prototype during testing in Limestone, Maine (Altaeros Energies 2012)

The AWT climbed up 350 feet high, produced power at altitude, and landed in an automated cycle. In addition, the prototype lifted the top-selling Southwest Skystream turbine to produce over twice the power at high altitude than generated at conventional tower height. The turbine was successfully transported and deployed into the air from a towable docking trailer.

Altaeros is developing its first product to reduce energy costs by up to 65 percent by harnessing the stronger winds found over 1,000 feet high and reducing installation time from weeks to days. In addition, it is designed to have virtually no environmental or noise impact and to require minimal maintenance. The Altaeros AWT will displace expensive fuel used to power diesel generators at remote industrial, military, and village sites. In the long term, Altaeros plans to scale up the technology to reduce costs in the offshore wind market.

“For decades, wind turbines have required cranes and huge towers to lift a few hundred feet off the ground where winds can be slow and gusty,” explained Ben Glass, the inventor of the AWT and Altaeros Chief Executive Officer. “We are excited to demonstrate that modern inflatable materials can lift wind turbines into more powerful winds almost everywhere—with a platform that is cost competitive and easy to setup from a shipping container.”

The AWT uses a helium-filled, inflatable shell to ascend to higher altitudes where winds are more consistent and over five times stronger than those reached by traditional tower-mounted turbines. Strong tethers hold the AWT steady and send electricity down to the ground.

The lifting technology is adapted from aerostats, industrial cousins of passenger blimps that for decades have lifted heavy communications and radar equipment into the air for long periods of time. Aerostats are rated to survive hurricane-level winds and have safety features that ensure a slow descent to the ground.

The emerging airborne or “high altitude” wind sector was recently featured on the cover of the March 2011 issue of Popular Mechanics. In December 2011, the Federal Aviation Administration (FAA) released draft guidelines allowing the new class of airborne wind systems to be sited under existing regulation.

Altaeros Energies is currently seeking partners to join its effort to launch the first commerciallyavailable high altitude wind turbine in the world.

About Altaeros: Altaeros Energies was founded in 2010 to generate low cost renewable energy by harnessing the strong winds found at higher altitudes. Altaeros Energies won the 2011 ConocoPhillips Energy Prize, and has received funding from the U.S. Department of Agriculture, the California Energy Commission, and the Maine Technology Institute.

To learn more, please visit
www.altaerosenergies.com
or contact:
Adam Rein
+1 857.244.1560
info@altaerosenergies.com

Adam Rein | Altaeros Energies
Further information:
http://www.altaerosenergies.com/AltaerosPressRelease032712.pdf

More articles from Power and Electrical Engineering:

nachricht Scientists print sensors on gummi candy: creating microelectrode arrays on soft materials
21.06.2018 | Technische Universität München

nachricht Electron sandwich doubles thermoelectric performance
20.06.2018 | Hokkaido University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>