Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Altaeros Energies Achieves Breakthrough in High Altitude Wind Power

29.03.2012
Altaeros Energies, a wind energy company formed out of MIT, announced today that it has demonstrated high altitude power production from an automated prototype of its airborne wind turbine.

The company recently completed testing of a 35-foot scale prototype of the Altaeros Airborne Wind Turbine (AWT) at the Loring Commerce Center in Limestone, Maine. The prototype, fabricated in partnership with Doyle Sailmakers of Salem, Massachusetts, achieved several key milestones.


Altaeros Airborne Wind Turbine prototype during testing in Limestone, Maine (Altaeros Energies 2012)

The AWT climbed up 350 feet high, produced power at altitude, and landed in an automated cycle. In addition, the prototype lifted the top-selling Southwest Skystream turbine to produce over twice the power at high altitude than generated at conventional tower height. The turbine was successfully transported and deployed into the air from a towable docking trailer.

Altaeros is developing its first product to reduce energy costs by up to 65 percent by harnessing the stronger winds found over 1,000 feet high and reducing installation time from weeks to days. In addition, it is designed to have virtually no environmental or noise impact and to require minimal maintenance. The Altaeros AWT will displace expensive fuel used to power diesel generators at remote industrial, military, and village sites. In the long term, Altaeros plans to scale up the technology to reduce costs in the offshore wind market.

“For decades, wind turbines have required cranes and huge towers to lift a few hundred feet off the ground where winds can be slow and gusty,” explained Ben Glass, the inventor of the AWT and Altaeros Chief Executive Officer. “We are excited to demonstrate that modern inflatable materials can lift wind turbines into more powerful winds almost everywhere—with a platform that is cost competitive and easy to setup from a shipping container.”

The AWT uses a helium-filled, inflatable shell to ascend to higher altitudes where winds are more consistent and over five times stronger than those reached by traditional tower-mounted turbines. Strong tethers hold the AWT steady and send electricity down to the ground.

The lifting technology is adapted from aerostats, industrial cousins of passenger blimps that for decades have lifted heavy communications and radar equipment into the air for long periods of time. Aerostats are rated to survive hurricane-level winds and have safety features that ensure a slow descent to the ground.

The emerging airborne or “high altitude” wind sector was recently featured on the cover of the March 2011 issue of Popular Mechanics. In December 2011, the Federal Aviation Administration (FAA) released draft guidelines allowing the new class of airborne wind systems to be sited under existing regulation.

Altaeros Energies is currently seeking partners to join its effort to launch the first commerciallyavailable high altitude wind turbine in the world.

About Altaeros: Altaeros Energies was founded in 2010 to generate low cost renewable energy by harnessing the strong winds found at higher altitudes. Altaeros Energies won the 2011 ConocoPhillips Energy Prize, and has received funding from the U.S. Department of Agriculture, the California Energy Commission, and the Maine Technology Institute.

To learn more, please visit
www.altaerosenergies.com
or contact:
Adam Rein
+1 857.244.1560
info@altaerosenergies.com

Adam Rein | Altaeros Energies
Further information:
http://www.altaerosenergies.com/AltaerosPressRelease032712.pdf

More articles from Power and Electrical Engineering:

nachricht Fraunhofer starts development of refrigerant-free, energy-efficient electrocaloric heat pumps
09.12.2019 | Fraunhofer IPM

nachricht A solution for cleaning up PFAS, one of the world's most intractable pollutants
06.12.2019 | Colorado State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Molecular milk mayonnaise: How mouthfeel and microscopic properties are related in mayonnaise

11.12.2019 | Life Sciences

Tuberculosis: New drug substance BTZ-043 is being tested on patients for the first time

11.12.2019 | Health and Medicine

One-third of recent global methane increase comes from tropical Africa

11.12.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>