Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A nanoscale device to generate high-power Terahertz waves

26.03.2020

Researchers at EPFL have developed a nanodevice that operates more than 10 times faster than today's fastest transistors

Terahertz (THz) waves fall between microwave and infrared radiation in the electromagnetic spectrum, oscillating at frequencies of between 100 billion and 30 trillion cycles per second. These waves are prized for their distinctive properties: they can penetrate paper, clothing, wood and walls, as well as detect air pollution. THz sources could revolutionize security and medical imaging systems. What's more, their ability to carry vast quantities of data could hold the key to faster wireless communications.


The nanoscale terahertz wave generator can be implemented on flexible substrates. © EPFL / POWERlab

Credit: EPFL / POWERlab

THz waves are a type of non-ionizing radiation, meaning they pose no risk to human health. The technology is already used in some airports to scan passengers and detect dangerous objects and substances.

Despite holding great promise, THz waves are not widely used because they are costly and cumbersome to generate. But new technology developed by researchers at EPFL could change all that. The team at the Power and Wide-band-gap Electronics Research Laboratory (POWERlab), led by Prof. Elison Matioli, built a nanodevice (1 nanometer = 1 millionth of a millimeter) that can generate extremely high-power signals in just a few picoseconds, or one trillionth of a second, - which produces high-power THz waves.

The technology, which can be mounted on a chip or a flexible medium, could one day be installed in smartphones and other hand-held devices. The work first-authored by Mohammad Samizadeh Nikoo, a PhD student at the POWERlab, has been published in the journal Nature.

How it works

The compact, inexpensive, fully electric nanodevice generates high-intensity waves from a tiny source in next to no time. It works by producing a powerful "spark," with the voltage spiking from 10 V (or lower) to 100 V in the range of a picosecond. The device is capable of generating this spark almost continuously, meaning it can emit up to 50 million signals every second. When hooked up to antennas, the system can produce and radiate high-power THz waves.

The device consists of two metal plates situated very close together, down to 20 nanometers apart. When a voltage is applied, electrons surge towards one of the plates, where they form a nanoplasma. Once the voltage reaches a certain threshold, the electrons are emitted almost instantly to the second plate. This rapid movement enabled by such fast switches creates a high-intensity pulse that produces high-frequency waves.

Conventional electronic devices are only capable of switching at speeds of up to one volt per picosecond - too slow to produce high-power THz waves.

The new nanodevice, which can be more than ten times faster, can generate both high-energy and high-frequency pulses. "Normally, it's impossible to achieve high values for both variables," says Matioli.

"High-frequency semiconductor devices are nanoscale in size. They can only cope with a few volts before breaking out. High-power devices, meanwhile, are too big and slow to generate terahertz waves. Our solution was to revisit the old field of plasma with state-of-the-art nanoscale fabrication techniques to propose a new device to get around those constraints."

According to Matioli, the new device pushes all the variables to the extreme: "High-frequency, high-power and nanoscale aren't terms you'd normally hear in the same sentence."

"These nanodevices, on one side, bring an extremely high level of simplicity and low-cost, and on the other side, show an excellent performance. In addition, they can be integrated with other electronic devices such as transistor.

Considering these unique properties, nanoplasma can shape a different future for the area of ultra-fast electronics", says Samizadeh.

The technology could have wide-ranging applications beyond generating THz waves. "We're pretty sure there'll be more innovative applications to come," adds Matioli.

Media Contact

Elison Matioli
elison.matioli@epfl.ch
41-216-933-721

 @EPFL_en

http://www.epfl.ch/index.en.html 

Elison Matioli | EurekAlert!
Further information:
https://actu.epfl.ch/news/a-nanoscale-device-that-can-see-through-walls
http://dx.doi.org/10.1038/s41586-020-2118-y

More articles from Power and Electrical Engineering:

nachricht ETRI develops eco-friendly color thin-film solar cells
31.07.2020 | National Research Council of Science & Technology

nachricht Silicon Carbide Transistors Improve Efficiency in Home Storage Systems
24.07.2020 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Identifying the blind spots of soil biodiversity

04.08.2020 | Life Sciences

Implantable transmitter provides wireless option for biomedical devices

04.08.2020 | Medical Engineering

Surface clean-up technology won't solve ocean plastic problem

04.08.2020 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>