Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Root exudates affect soil stability, water repellency

18.04.2018

Research digs into delicate plant, soil interactions

As the growing season progresses, you might not notice much about what's happening to plants under the soil. Most of us pay attention to new shoots, stems, leaves, and eventually the flowers and crop we intend to grow. We might think of roots as necessary, but uninteresting, parts of the crop production process.


At the center of the image a barley root is visible. Using a machine learning segmentation technique, the pores in the soil have been separated into different sizes. The scale bar is the pore size in microns.

Credit: Diamond Light Synchrotron facility

Usage Restrictions: Please use with story only.

Paul Hallett and his team disagree. They focus on what's going on in the soil with the plant's roots.

The zone of soil that surrounds a plant's roots is called the rhizosphere. It's the combination of the Latin words for "root" and "area." And it's a busy location for important-but hidden-crop production processes.

In the rhizosphere, plants make a variety of chemical compounds called exudates. Hallett and fellow researchers at the University of Aberdeen look at the effects that exudates have on the plant and surrounding soil community. Their unique work takes small-scale measurements near the surface of the roots. The properties here can be very different from the rest of the soil.

"Roots continuously secrete chemicals into the soil as a way to liberate nutrients that are attached to soil particles," says Hallett. In human digestion, the stomach secretes gastric juices to help break up food; exudates are the plant equivalent of gastric juices.

Hallett describes exudates' chemical composition as "a veritable cocktail or 'buffet' of resources for anything in the rhizosphere." In addition to helping plants procure nutrients, exudates are food sources for the microbes that are an important part of the soil microbiome.

Exudates also have an important role in holding soil together. Roots and fungi that live in the soil hold together larger clumps of soil, but exudates work on the micro level. Like glue, they hold together soil particles in important mechanical networks. Soil scientists call these soil networks aggregates.

Whereas the binding effects of roots and fungal networks are usually long-term, exudates' influence on the soil can be fleeting. "Root exudates won't last in their original form for long in the soil, as they get consumed and transformed by microbes," says Hallett. This process can completely destroy the exudate or create even better compounds for binding soil particles.

"Plant root exudates have a massive impact on aggregate formation," says Hallett. "They do this through a number of ways, including acting like glues or changing how quickly the rhizosphere wets up and dries with rainfall and evaporation."

Hallett's team researched the effects of exudates on different types of soil. They researched environments with a sandy loam soil texture versus a clay loam texture. This is important because chemical reactions between the exudates and soil particles vary with soil type.

They also researched various plant exudates from barley and corn. They found that barley's exudates increased how well soil particles are bound together, but not as much as corn. They also found that while barley exudates didn't impact soil water repellency, corn exudates did.

Research such as Hallett's shows that during the growing season-and beyond-there are delicate interactions between each plant and the surrounding soil. All of these interactions affect the amount of water that is captured by soil and absorbed by plants. Production of exudates also affects how well the plants can pull vital nutrients out of the soil, and even affects the soil in the rhizosphere.

Future research for Hallett's team will include looking at exudate production along plants' roots. They'll also look at the age of roots, and whether younger roots produce exudates with different soil-holding and water-absorbing qualities.

###

Read more about Hallett's research in Vadose Zone Journal. Funding for this project came from the Biotechnology and Biological Sciences Research Council (BBSRC) project 'Rhizosphere by Design' (BB/L026058/1, BB/J000868/1, and BB/J011460/1).

Susan Fisk | EurekAlert!

Further reports about: Agronomy Roots crop crop production gastric microbes rhizosphere soil stability

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>