Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From icehouse to hothouse: Melting ice and rising CO2 caused climate shift

20.02.2007
Three hundred million years ago, Earth's climate shifted dramatically from icehouse to hothouse, with major environmental consequences. That shift was the result of both rising atmospheric carbon dioxide concentrations and the melting of vast ice sheets, new research by University of Michigan paleoclimatologist Christopher Poulsen shows.

Poulsen will discuss his findings in a symposium titled "Geosystems: Climate Lessons from Earth's Last Great Icehouse" at the annual meeting of the American Association for the Advancement of Science in San Francisco.

The changes occurred during the period of Earth's history when the continents were consolidated into a single supercontinent, Pangaea. Toward the end of the Paleozoic Era, tropical regions of Pangaea became much warmer and drier, winds in the region shifted direction, and tropical flora drastically changed. At the same time, atmospheric carbon dioxide increased and the enormous ice sheets that blanketed Gondwana---the landmass that eventually broke up to become present-day South America, Africa, Antarctica, India and Australia---began disappearing.

"There's lots of evidence for large changes in climate and vegetation, but there's been no clear hypothesis for why those changes occurred," said Poulsen, who is an assistant professor of geological sciences. A few notions have been floating around: some researchers have suggested that the uplifting or erosion of mountain chains might have caused the climate shift; others think the motion of the plates that make up Earth's outer layer played a role. But Poulsen had a different idea. "I wondered whether the melting of the Gondwana ice sheets and/or the rise in atmospheric carbon dioxide could explain these documented climate and vegetation changes," he said.

Poulsen and coworkers used theoretical climate models to experiment with different combinations of carbon dioxide concentrations and glaciation.

"The modeling simulations showed that as Gondwana deglaciated and carbon dioxide rose, the tropics became more arid and the vegetation was fried and replaced with desert," Poulsen said. "Our results also showed that deglaciation and rising carbon dioxide contributed about equally to the observed climate and vegetation changes."

In addition, the model, which relied on estimates of carbon dioxide concentrations, produced more warming than geological evidence actually indicates. This may suggest that carbon dioxide didn't rise quite as much as has been estimated, Poulsen said.

Poulsen is cautious about applying his conclusions to current climate concerns.

"The climate change I'm studying happened a long time ago, so you have to be a little careful, but certainly this work shows there is a very strong connection between carbon dioxide increase and warming," he said. "Another interesting aspect is that for a long time people have thought that the tropics aren't really susceptible to large climate changes. This work shows that the tropics are susceptible."

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>