Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Equatorial water belt slackens

07.02.2002


30 years of slowing Pacific circulation may have changed climate


Less carbon may have reached the atmosphere from the Pacific Ocean surface over the past two decades
© Noella Ballenger



A recent slowing in the circulation of Pacific Ocean waters could have raised Pacific sea surface temperatures. It may even mean that less carbon has reached the atmosphere from the ocean surface over the past two decades.

Across the Pacific, water circulates in two giant loops in the Northern and Southern Hemispheres. It flows from the subtropics to the tropics about at a depth of 100-400 metres, rises to the surface at the equator, and heads back towards the poles at the surface.


This circulation has changed since the 1970s, say Michael McPhaden of the Pacific Marine Environmental Laboratory, Seattle, Washington, and his colleague Dongxiao Zhang of the University of Washington in Seattle1. Thirty years down the line, the amount of subtropical water that reaches the equatorial Pacific sea surface has dropped by 25%.

It had already been noticed that the temperature of the sea surface at the equatorial Pacific has risen by 0.8 oC over the past 30 years. This had puzzled researchers, as cloudy skies in this area have become more frequent over the past 50 years, providing cooling shade. McPhaden and Zhang’s finding explains the warming: the supply of cool subtropical water has dropped.

Getting warmer

The warming that sluggish circulation has brought to the equatorial Pacific may have something to do with the shift in the mid-1970s towards stronger, longer and more frequent El Niño events, in which ocean temperatures and wind patterns fluctuate.

El Niño events cause erratic weather around the world, including droughts in Southeast Africa and floods in parts of South America. But the link between decade-long circulation changes and shifts in the three- to seven-year El Niño cycles needs further investigation.

Nor can connections to global warming be untangled yet. "The beauty of the study is that it works with observations. So we know that the slowing effect is real and not just speculation," says Richard Kleeman, of the Center for Atmosphere Ocean Science, New York.

But it is too early, he thinks, to decide whether - or indeed how - the new results might tie in with the changing climate. "It is a very complex system," he says.

One potential connection lies in the carbon cycle. "The tropical Pacific is the largest oceanic source of carbon dioxide to the atmosphere," McPhaden and Zhang point out. The slowing circulation implies that less of this greenhouse gas has reached the ocean surface over the past decade. So, in the short term, the slowing circulation has helped to keep global warming at bay.

References

  1. McPhaden, M. J. & Zhang, D. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415, 603 - 3608, (2002).

HEIKE LANGENBERG | © Nature News Service
Further information:
http://www.nature.com/nsu/020204/020204-8.html

More articles from Earth Sciences:

nachricht Hundreds of bubble streams link biology, seismology off Washington's coast
22.03.2019 | University of Washington

nachricht Atmospheric scientists reveal the effect of sea-ice loss on Arctic warming
11.03.2019 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>