Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate changes locked inside microfossils

04.03.2004


Fossilised remains of sea creatures are commonly found in rocks in the mountains of the Basque Country. So, at some time in the past, Euskal Herria was under the sea. For example, during the Palaeocene period, some 65-55 million years ago. The region was then subtropical, and similar in appearance to the Australian Coral Reef.



Along the Bizkaia and Gipuzkoa coast, around Eibar, in Irati and in Urbasa, for example, we can see Palaeocene outcrops at the surface. During that period there were collisions between the European and Iberian tectonic plates which pushed up earth mass that lay under the sea. These very collisions gave rise to the Pyrenees.

These Palaeocene rock outcrops are not at all common on the rest of the planet and, thus, in order to ascertain what happened during that period, researchers have an invaluable source of information in the Basque Country. Moreover, the area has another advantage: remains occur both of the sea crust and of the continental platform and its edge, given that the town of Zumaia at that time was submerged 1,000 metres below the sea while the Rioja Alavesa was above surface.


The importance of these rocks lies in the fact that, within them, remains which contain information on palaeoclimatic and palaeoecological changes that took place in the Palaeocene can be found: microfossils, for example. The data obtained from these miniscule creatures can prove to be very useful today in order to know about the evolution of global warming which is apparently taking place on Earth, just like now, the end of the Palaeocene saw a rapid rise in global warming.

Microfossils: data bank

A group of researchers at Leioa (the Bizkaia campus of the University of the Basque, Country) analysed microfossils, mainly planktonic foraminifers and calcareous nanofossils. These microorganisms lived in the earth’s crust at the bottom of the ocean and their fossils have been piling up over millions of years to the point of providing an unbeatable source of data.

These microorganisms are very sensitive to climatic or temperature changes and that is why some live in warm waters and others in cold. Thus, they are found in differentiated zones in the sea and so, if the sea temperature varies, these zones become modified and the microorganisms migrate with the changes from zone to zone. Thus, the fossil register for these microorganisms in any zone indicates the successive climatic changes that occurred during that era.


To analyse these microfossils it has to be taken into account that nowadays they form part of calcareous rocks or marls. For example, 80 % of the rocks formed during the Palaeocene at the bottom of the sea may be made up of these microfossils or, rather, of their shells.

In these analyses, researchers extract a small rock sample which is then broken up in water. Just one drop of this contains millions of microfossils. A drop is analysed under the microscope or with a magnifying glass, as the fossils are the approximate size of a few micras.

These investigations show up the different microfossil species found in the rock sample and the proportion of each are counted and analysed. In the rocks in the Basque Country more than 200 species of calcareous nanofossils and 175 of planktonic foraminifers have been identified. With the knowledge of which live in warm and which in cold waters, we can deduce what climatic changes happened in past times and have a good idea of what is likely to happen in the future.

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com

More articles from Earth Sciences:

nachricht Geomagnetic jerks finally reproduced and explained
23.04.2019 | CNRS

nachricht "Flight recorder" of rocks within the Earth’s crust
16.04.2019 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>