Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteor Likely Caused Earth’s Greatest Extinction Event

02.12.2003


The "Great Dying", a time of earth’s greatest number of extinctions, appears to have been caused by the impact of a large meteor, according to a research team that includes Luann Becker, a scientist with the Institute for Crustal Studies in the Department of Geology at the University of California, Santa Barbara.



The theory, recently published by the team in the journal Science (Nov. 21, 2003), explains that this extinction event, which occurred approximately 251 million years ago, is much earlier than the demise of the dinosaurs, which is estimated at approximately 65 million years ago and is also believed to have been caused by a large meteor impact.

The evidence is the most convincing yet for an impact at the "end-Permian," a time commonly referred to as "The Great Dying," when life was nearly erased from the earth, explained Becker. She is currently working in Antarctica with a team searching for more "impact tracers," the geological markers that show evidence of large meteors hitting the earth. Becker has made several research trips to Antarctica and in July 2001 she received the National Science Foundation Antarctic Service Medal.


Her article "Repeated Blows," published in the March 2002 issue of Scientific American, describes the evidence for many past collisions with asteroids and how geologists are able to find the evidence for these collisions and to date them.

In her overview she states:
  • "About 60 meteorites five or more kilometers across have hit the earth in the past 600 million years. The smallest ones would have carved craters some 95 kilometers wide.

  • "Most scientists agree that one such impact did in the dinosaurs, but evidence for large collisions coincident with other mass extinctions remained elusive – until recently.

  • "Researchers are now discovering hints of ancient impacts at sites marking history’s top five mass extinctions, the worst of which eliminated 90 percent of all living species."

Becker’s current research at the Graphite Peak in the Central Transantarctic Mountains, Antarctica, described in the recent Science article, has revealed several meteoritic fragments, metallic grains, in a thin claystone "breccia" layer. Becker and the research team believe this to be strong evidence for a large impact that appears to have triggered the Great Dying. Breccia is ejected debris that resettled in a layer of sediment. The metallic grains also appear in the same layer (end-Permian) in Meishan, southern China. They also resemble grains found in the same strata in Sasayama, Japan. (The earth was a single continent at the time of the impact.)

The team also found "shocked quartz" in this same layer in the Graphite Peak. In the Scientific American article Becker explained, "Few earthly circumstances have the power to disfigure quartz, which is a highly stable mineral even at high temperatures and pressures deep inside the earth’s crust." Quartz can be fractured by extreme volcanic activity, however, only in one direction. Shocked quartz is fractured in several directions and is therefore believed to be a good tracer for the impact of a meteor.

The researchers are somewhat surprised that they have not found the strong presence of the mineral iridium in the Graphite Peak work. In an e-mail from Antarctica Becker stated, "Interestingly, we do not see a strong iridium anomaly (the impact tracer that marks the Cretaceous-Tertiary boundary or the dinosaur extinction event)."

As she explained in Scientific American, "The first impact tracer linked to a severe mass extinction was an unearthly concentration of iridium, an element that is rare in rocks on our planet’s surface but abundant in many meteorites…. From this iridium discovery (in 1980) came the landmark hypothesis that a giant impact ended the reign of the dinosaurs — and that such events may well be associated with other severe mass extinctions over the past 600 million years." The discovery was strongly debated around the world and scrutinized by geologists.

The increased attention brought about the discovery of more impact tracers, including extraterrestrial fullerenes found in the Graphite Peak boundary layer. These tracers are carbon molecules called fullerenes for their soccer-ball shape. They trap extraterrestrial gases in space and travel to the earth in the meteor.

The team concludes the Science article by saying, "These observations lead us to believe that continued research on such materials from additional Permian-Triassic boundary samples will finally lead to a resolution of the long-sought and contentious issue of a catastrophic collision of a celestial body with the Earth at the end-Permian. In light of the new evidence presented here, this is a reasonable interpretation of the global extinction event at the Permian-Triassic boundary."

Gail Gallessich | UCSB
Further information:
http://www.instadv.ucsb.edu/release/Display.aspx?PKey=1073

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>