Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists with Hawaii Ocean Mixing Experiment Closing in on Puzzle of Ocean Energy

18.07.2003


Using an array of technologies and instruments, scientists in the Hawaii Ocean-Mixing Experiment (HOME), a nearly $18 million National Science Foundation-sponsored project focused on pinpointing, dissecting, and analyzing ocean mixing, captured intriguing phenomena including undersea waves that spanned nearly 1,000 feet


Temperature was recorded at several depths on a mooring set in 1,453 meters of water along the Hawaiian Ridge during the Home project. Twice on this day, at the same frequency as the tide, the graphic shows displacements of about 300 meters. For comparison, the surface tidal range in Honolulu is less than a meter.


Scientists from six institutions, including Scripps Institution of Oceanography at the University of California, San Diego, are closing the gap in deciphering one of the most puzzling aspects of the world’s oceans. "Ocean mixing," the complex motions of seawater that span large-scale phenomena down to tiny, centimeter-sized turbulent motion, serves a key role in redistributing heat throughout the oceans. Although ocean mixing is a key element in the climate system and important for sea life for dispersing nutrients, a mystery remains in accounting for how its processes unfold.

A new research paper in the journal Science describes ocean mixing in unprecedented detail. Using an array of technologies and instruments, scientists in the Hawaii Ocean-Mixing Experiment (HOME), a nearly $18 million National Science Foundation-sponsored project focused on pinpointing, dissecting, and analyzing ocean mixing, captured intriguing phenomena including undersea waves that spanned nearly 1,000 feet. The paper in the July 18 issue of Science is the first effort by HOME investigators to collectively document their findings.

The HOME scientists chose the Hawaiian Ridge, a 1,600-mile largely submerged volcanic mountain chain that stretches from the Big Island of Hawaii to Midway Island, due to its rough topography, including large underwater mountains and valleys. Such areas are sometimes referred to as the "stirring rods" of the oceans.



Prior to the HOME project, areas such as the Hawaiian Ridge were hypothesized to be a major energy pathway for ocean mixing turbulence. Traveling across the Pacific, oceanic tides crash upon the Hawaiian Ridge and dissipate. To help explain how such areas help mix warm low latitude waters and cool polar waters, HOME investigators undertook a comprehensive survey to track the cascade of ocean energy and turbulence.

"One of the triumphs of the HOME experiment was being able to measure the cascade from thousands of meters down to centimeter scales," said Dan Rudnick, a professor of oceanography at Scripps and lead author of the Science paper. "I don’t think this effort is rivaled in terms of measuring detailed dissipation over a topographic feature."

HOME scientists, using the Scripps research vessel Roger Revelle, the flagship of the Scripps fleet; the towed instrument SeaSoar, which took a variety of measurements of upper ocean properties; a new Doppler sonar developed by Scripps Professor Robert Pinkel; and a variety of other instruments and equipment, found that the Hawaiian Ridge is indeed a site with vastly increased ocean mixing. They documented undersea internal wave energy that was enhanced 10 times at the Hawaiian Ridge as compared with normal open ocean areas.

With the details of the cascading processes described in the Science paper, the coauthors helped further close the gap of how energy is dissipated in ocean mixing. But the paper notes that the energy puzzle is not completely solved with these results. Even more energy for ocean mixing must be found elsewhere.

"Our conclusion is interesting because we found that there was certainly a lot of energy loss occurring at the Hawaiian Ridge, but much of it propagates away and doesn’t get dissipated at the ridge. So we’re approaching closure of this phenomenon," said Rudnick. "But until we have a firmer understanding of this process-until we get a better handle on mixing-climate models will be of limited use."

In addition to Rudnick, coauthors of the study include Joseph P. Martin, Robert Pinkel, and Luc Rainville from Scripps Institution; Timothy J. Boyd, Gary D. Egbert, Jody M. Klymak, Murray D. Levine, James N. Moum, and Jonathan D. Nash from Oregon State University; Russell E. Brainard from the Pacific Islands Fisheries Science Center; Glenn S. Carter, Michael C. Gregg, Eric Kunze, Craig M. Lee, and Thomas B. Sanford from the University of Washington; Peter E. Holloway from the University of New South Wales, Australia; and Douglas S. Luther and Mark A. Merrifield from the University of Hawaii.

Planning for the HOME project began in 1996 and the final field phases of the project were concluded last month. Scientific analysis of the data set is planned through 2005.

Scripps Institution of Oceanography at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The scientific scope of the institution has grown since its founding in 1903. A century of Scripps science has had an invaluable impact on oceanography, on understanding of the earth, and on society. More than 300 research programs are under way today in a wide range of scientific areas. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration. Now plunging boldly into the 21st century, Scripps is celebrating its centennial in 2003.

Mario Aguilera | Scripps Institution
Further information:
http://scripps.ucsd.edu
http://scripps100.ucsd.edu

More articles from Earth Sciences:

nachricht The struggle for life in the Dead Sea sediments: Necrophagy as a survival mechanism
26.03.2019 | Geological Society of America

nachricht Mangroves and their significance for climate protection
26.03.2019 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>