Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA finds soot has impact on global climate

21.05.2003


A team of researchers, led by NASA and Columbia University scientists, found airborne, microscopic, black- carbon (soot) particles are even more plentiful around the world, and contribute more to climate change, than was previously assumed by the Intergovernmental Panel of Climate Change (IPCC).



The researchers concluded if these soot particles are not reduced, at least as rapidly as light-colored pollutants, the world could warm more quickly.

The findings appear in the latest issue of the Proceedings of the National Academy of Sciences. It is authored by Makiko Sato, James Hansen and others from NASA’s Goddard Institute for Space Studies (GISS) and Columbia University, New York; Oleg Dubovik, Brent Holben and Mian Chin of NASA’s Goddard Space Flight Center, Greenbelt, Md.; and Tica Novakov, Lawrence Berkeley National Laboratory, Berkeley, Calif.


Sato, Hansen and colleagues used global atmospheric measurements taken by the Aerosol Robotic Network (AERONET). AERONET is a global network of more than 100 sun photometers that measure the amount of sunlight absorbed by aerosols (fine particles in the air) at wavelengths from ultraviolet to infrared. The scientists compared the AERONET data with Chin’s global-aerosol computer model and GISS climate model, both of which included sources of soot aerosols consistent with the estimates of the IPCC.

The researchers found the amount of sunlight absorbed by soot was two-to-four times larger than previously assumed. This larger absorption is due in part to the way the tiny carbon particles are incorporated inside other larger particles: absorption is increased by light rays bouncing around inside the larger particle.

According to the researchers, the larger absorption is attributable also to previous underestimates of the amount of soot in the atmosphere. The net result is soot contributes about twice as much to warming the world as had been estimated by the IPCC.

Black carbon or soot is generated from traffic, industrial pollution, outdoor fires and household burning of coal and biomass fuels. Soot is a product of incomplete combustion, especially of diesel fuels, biofuels, coal and outdoor biomass burning. Emissions are large in areas where cooking and heating are done with wood, field residue, cow dung and coal, at a low temperature that does not allow for complete combustion. The resulting soot particles absorb sunlight, just as dark pavement becomes hotter than light pavement.

Both soot and the light-colored tiny particles, most of which are sulfates, pose problems for air quality around the world. Efforts are beginning to reduce the sulfate aerosols to address air quality issues.

"There is a pitfall, however, in reducing sulfate emissions without simultaneously reducing black carbon emissions," Hansen said. Since soot is black, it absorbs heat and causes warming. Sulfate aerosols are white, reflect sunlight, and cause cooling. At present, the warming and cooling effects of the dark and light particles partially balance.

This research continues observations of global climate change. It was funded by NASA’s Earth Science Enterprise. The Enterprise is dedicated to understanding the Earth as an integrated system and applying Earth System Science to improve prediction of climate, weather, and natural hazards using the unique vantage point of space.


###

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0509pollution.html
http://aeronet.gsfc.nasa.gov/
http://www.nasa.gov

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>