Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid Release of Sea-Floor Methane Caused Extreme Global Warming 55 Million Years Ago

13.05.2003


Scientists have just returned from two months at sea aboard the oceanographic drill ship JOIDES Resolution where they studied the effects of a larger than expected methane release 55 million years ago that may have caused extreme global warming.



In March, the scientists traveled to a site near Walvis Ridge — an ancient submarine mountain chain off Africa—as part of the NSF-supported Ocean Drilling Program (ODP) Leg 208. The researchers searched for evidence of roughly 2,000 gigatons of methane they believe escaped into the ocean and atmosphere to cause the Paleocene-Eocene Thermal Maximum, an extreme global warming event that is unique in Earth history in both magnitude and rate of warming.

Sediments far below the seafloor hold clues to the cause of this warming. Evidence for the dissolution of methane was recorded in debris that settled, layer by layer, on the ocean floor over thousands of years.


Cores of sediment brought up from the study site suggested a significant amount of methane dissolution, said ODP scientist Jim Zachos of the University of California at Santa Cruz, perhaps twice the original estimate.

"It far exceeds what has been estimated by models, assuming a release of 2,000 gigatons of methane," added Dick Kroon of Vrije Universiteit Amsterdam, a fellow researcher aboard JOIDES Resolution.

The initial results also suggest that Earth’s recovery to a "normal state" took as long as 100,000 years.

Geochemists speculate that the methane escaped from sea-floor clathrates, methane-trapping ice-crystals that are distributed in sediments on the outer edges of continental margins worldwide. For reasons that remain unknown, the clathrates suddenly began to decompose on a massive scale at the time of the Paleocene-Eocene Thermal Maximum, increasing the amount of methane in the atmosphere and oceans.

The rapid release of so much methane, and the methane’s oxidation to carbon dioxide, would have significantly altered ocean chemistry, and ultimately the atmosphere and global climate. The process appears to have lasted for a period of 40,000 years, scientists say, warming Earth by more than five degrees Celsius.

"We suspect the melting of clathrates and subsequent rapid release of methane was initiated by a gradual warming that pushed the climate system across a threshold," said Zachos. Once started, the release of methane and the resultant warming likely fueled the release of more methane, a phenomenon of concern for future global climate change, he added.

ODP is an international partnership of scientists and research institutions organized to study the evolution and structure of the Earth. It is funded by NSF with substantial contributions from international partners.

NSF Science Expert: Bruce Malfait, bmalfait@nsf.gov

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov/od/lpa/news/03/tip030512.htm

More articles from Earth Sciences:

nachricht Huge stores of Arctic sea ice likely contributed to past climate cooling
21.02.2020 | University of Massachusetts Amherst

nachricht First research results on the "spectacular meteorite fall" of Flensburg
18.02.2020 | Westfälische Wilhelms-Universität Münster

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>