Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer model suggests future crop loss due to potential increase in extreme rain events

29.10.2002


An increased frequency of extreme precipitation events has been observed over the last 100 years in the United States. Global climate models project that similar trends may continue and even strengthen over the coming decades, due to climate change. Now, a study using computer climate and crop model simulations predicts that U.S. agricultural production losses due to excess rainfall may double in the next 30 years, resulting in an estimated $3 billion per year in damages.



Cynthia Rosenzweig and Francesco Tubiello, researchers at the NASA Goddard Institute for Space Studies and Columbia University, New York, and the other authors of this study, found that current assessments of the impacts of climate change on agriculture have not accounted for the negative impacts on crops from increased precipitation and floods. In an effort to close this information gap, the researchers modified an existing crop computer model to simulate the extent to which excess soil moisture from heavy rain might damage crop plants.

"The impacts of excess soil moisture due to increased precipitation need to be taken into account because of associated crop losses and potential financial damages," Rosenzweig said.


The researchers argue that while droughts receive the most attention when it comes to assessing the impacts of climate change on agriculture, excess precipitation should also be a major concern. The 1993 U.S. Midwest floods, for example, caused about $6 to 8 billion in damages to farmers, accounting for roughly half of the total overall losses from the flood, according to the Federal Emergency Management Agency. Overall precipitation and extreme rain events are projected to increase in the future because of stronger water cycle dynamics associated with global warming.

Global climate model simulations used in the study project increases in total precipitation and in the number of extreme precipitation events in the Corn Belt and on average for the continental United States. Over the Corn Belt states, the average number of extreme precipitation events was 30 percent above present levels in the 2030s, and 65 percent higher in the 2090s. The same climate projections were used for a 2001 U.S. national assessment report on potential consequences of climate change.

The researchers also modified an existing crop model, called CERES-Maize, in order to simulate the effects of excess soil moisture from heavy precipitation on corn crops. The model calculates plant development, growth and final yield based on weather, crop genetic traits and management practices. The researchers modified CERES-Maize by adding in a function that limited the simulated plant’s ability to grow roots after three consecutive days of soil saturation. The model simulated corn growth in nine U.S. Corn Belt states, including Kansas, Nebraska, Illinois, Indiana, Iowa, North and South Dakota, Ohio and Wisconsin, which represent 85 percent of total U.S. corn production.

The modified model showed that the probability of crop damage due to water-logged soils could be even greater than the projected increases in heavy precipitation - corresponding to 90 percent more damage in the 2030s, and 150 percent more damage by the 2090s, compared to present conditions.

To relate the climate and crop model results to economic losses, Rosenzweig and her colleagues used USDA economic data to estimate that damages to U.S. corn production due to excess soil moisture currently amount to about $600 million per year.

The researchers then estimated that potential future damages to major U.S. crops due to excess soil moisture could lead to total losses of up to $3 billion per year by the 2030s, on average.

The study appears in the current issue of Global Environmental Change. The research was conducted at the Climate Impacts Group of the NASA Goddard Institute for Space Studies at Columbia University and was supported by Environmental Defense and the Environmental Protection Agency.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/20021022cropdamage.html

More articles from Earth Sciences:

nachricht Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column
27.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht An international team including scientists from MARUM discovered ongoing and future tropical diversity decline
26.05.2020 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Why developing nerve cells can take a wrong turn

04.06.2020 | Life Sciences

The broken mirror: Can parity violation in molecules finally be measured?

04.06.2020 | Physics and Astronomy

Innocent and highly oxidizing

04.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>