Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer model suggests future crop loss due to potential increase in extreme rain events

29.10.2002


An increased frequency of extreme precipitation events has been observed over the last 100 years in the United States. Global climate models project that similar trends may continue and even strengthen over the coming decades, due to climate change. Now, a study using computer climate and crop model simulations predicts that U.S. agricultural production losses due to excess rainfall may double in the next 30 years, resulting in an estimated $3 billion per year in damages.



Cynthia Rosenzweig and Francesco Tubiello, researchers at the NASA Goddard Institute for Space Studies and Columbia University, New York, and the other authors of this study, found that current assessments of the impacts of climate change on agriculture have not accounted for the negative impacts on crops from increased precipitation and floods. In an effort to close this information gap, the researchers modified an existing crop computer model to simulate the extent to which excess soil moisture from heavy rain might damage crop plants.

"The impacts of excess soil moisture due to increased precipitation need to be taken into account because of associated crop losses and potential financial damages," Rosenzweig said.


The researchers argue that while droughts receive the most attention when it comes to assessing the impacts of climate change on agriculture, excess precipitation should also be a major concern. The 1993 U.S. Midwest floods, for example, caused about $6 to 8 billion in damages to farmers, accounting for roughly half of the total overall losses from the flood, according to the Federal Emergency Management Agency. Overall precipitation and extreme rain events are projected to increase in the future because of stronger water cycle dynamics associated with global warming.

Global climate model simulations used in the study project increases in total precipitation and in the number of extreme precipitation events in the Corn Belt and on average for the continental United States. Over the Corn Belt states, the average number of extreme precipitation events was 30 percent above present levels in the 2030s, and 65 percent higher in the 2090s. The same climate projections were used for a 2001 U.S. national assessment report on potential consequences of climate change.

The researchers also modified an existing crop model, called CERES-Maize, in order to simulate the effects of excess soil moisture from heavy precipitation on corn crops. The model calculates plant development, growth and final yield based on weather, crop genetic traits and management practices. The researchers modified CERES-Maize by adding in a function that limited the simulated plant’s ability to grow roots after three consecutive days of soil saturation. The model simulated corn growth in nine U.S. Corn Belt states, including Kansas, Nebraska, Illinois, Indiana, Iowa, North and South Dakota, Ohio and Wisconsin, which represent 85 percent of total U.S. corn production.

The modified model showed that the probability of crop damage due to water-logged soils could be even greater than the projected increases in heavy precipitation - corresponding to 90 percent more damage in the 2030s, and 150 percent more damage by the 2090s, compared to present conditions.

To relate the climate and crop model results to economic losses, Rosenzweig and her colleagues used USDA economic data to estimate that damages to U.S. corn production due to excess soil moisture currently amount to about $600 million per year.

The researchers then estimated that potential future damages to major U.S. crops due to excess soil moisture could lead to total losses of up to $3 billion per year by the 2030s, on average.

The study appears in the current issue of Global Environmental Change. The research was conducted at the Climate Impacts Group of the NASA Goddard Institute for Space Studies at Columbia University and was supported by Environmental Defense and the Environmental Protection Agency.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/20021022cropdamage.html

More articles from Earth Sciences:

nachricht Geomagnetic jerks finally reproduced and explained
23.04.2019 | CNRS

nachricht "Flight recorder" of rocks within the Earth’s crust
16.04.2019 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>