Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Field Project Seeks Clues to Climate Change in Remote Atmospheric Region

16.06.2008
Scientists are deploying an advanced research aircraft to study a region of the atmosphere that influences climate change by affecting Earth's thermal balance.

Findings from the project, based at the National Center for Atmospheric Research (NCAR), will be used by researchers worldwide to improve computer models of global climate in preparation for the next report by the Intergovernmental Panel on Climate Change (IPCC).

The project, which runs from April to June, is known as START 08 (Stratosphere-Troposphere Analyses of Regional Transport). It focuses on the tropopause, which is the boundary between the troposphere (lower atmosphere) and the stratosphere. Scientists are increasingly interested in the tropopause, because of both its importance in the global climate system and because the buildup of greenhouse gases has altered this atmospheric region in ways that are not yet fully understood.

"This region of the atmosphere is a weak link in climate research," explains NCAR scientist Laura Pan, a principal investigator on the project. "In order to understand climate change, we need to have accurate computer models of the planet. In order to have accurate models, we need to understand what's going on in the tropopause."

START is a collaborative effort involving the University of Miami, Texas A&M University, the University of Colorado, Harvard University, and the National Oceanic and Atmospheric Administration. Funding for the project comes from the National Science Foundation, which is NCAR's sponsor, and from NOAA.

----High-altitude missions----

The research team is deploying the NSF/NCAR Gulfstream-V, a modified jet aircraft with high-altitude capabilities that will fly about a dozen missions across much of North America, ranging up to about 47,000 feet high. The flight paths will take the jet's cutting-edge sensors through the top of the troposphere, which is the lowest layer of the atmosphere, and into the stratosphere. Focusing on the tropopause, the boundary between these two layers, scientists will take samples of air to determine the movements and concentrations of a number of gases. One of their goals is to learn more about water vapor and ozone, which act as potent greenhouse gases by trapping thermal radiation in the atmosphere, thereby warming the planet.

The altitude of the tropopause varies from 32,000 to 56,000 feet, with the highest part lying above the tropics. It is challenging territory for scientists because it is too high to observe with most ground-based instruments or most aircraft, and too low for satellites to view with great detail. Moreover, its altitude has changed in recent years as a result of global warming. As Earth's tropical regions have expanded, the highest part of the tropopause has extended farther north and south.

These changes are setting off a chain reaction that affects both weather patterns and long-term global climate. The research team wants to determine how weather patterns stir up chemicals near the tropopause and, in turn, how the tropopause's changing chemical composition influences global climate, including the location of the jet stream.

"We want to collect data that will help map out the chemical composition of this dynamic boundary region," says Elliot Atlas, a principal investigator on the project and professor of marine and atmospheric chemistry at the University of Miami. "This is a complex area, where naturally occurring gases and particles mix with pollutants from human activities in ways that can ultimately affect the weather and climate of our planet."

-----Critical data for the IPCC -----

Over the next two years, climate scientists will use observations from START and other sources to adjust computer models that simulate Earth's climate. These models will be used for the next round of IPCC reports, which are likely to be issued in about 2012. The IPCC, a recipient of the Nobel Peace Prize, operates under the auspices of the United Nations Environment Programme and the World Meteorological Organization.

"Understanding the tropopause region is particularly challenging because it involves interactions of winds and atmospheric motion with chemistry, clouds, and solar radiation," says Kenneth Bowman, a principal investigator on the project and professor of atmospheric science at Texas A&M University. "Properly representing this part of the atmosphere in global climate models requires getting all of these complex components correct. The Gulfstream-V aircraft allows us to directly observe many of these processes in place, providing a level of detail that cannot be matched by ground-based or satellite observations."

David Hosansky | newswise
Further information:
http://www.ucar.edu

More articles from Earth Sciences:

nachricht New 3D view of methane tracks sources
25.03.2020 | NASA/Goddard Space Flight Center

nachricht East Antarctica's Denman Glacier has retreated almost 3 miles over last 22 years
24.03.2020 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

3D printer sensors could make breath tests for diabetes possible

27.03.2020 | Power and Electrical Engineering

TU Bergakademie Freiberg researches virus inhibitors from the sea

27.03.2020 | Life Sciences

The Venus flytrap effect: new study shows progress in immune proteins research

27.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>