Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observing the development of a deep-sea greenhouse gas filter

28.09.2018

It takes time to do a thing well, this also and specifically applies to the deep sea. In a long-term study, marine scientists from Bremen for the first time observed the colonization of a deep-sea mud volcano after its eruption. Only slowly, rich life develops around the crater. The first settlers are tiny organisms that eat methane escaping from the volcano. Thereby, they keep this greenhouse gas from reaching the atmosphere. By and by, other microbes and eventually higher organisms settle. The present study describes how the colonization of the mud volcano proceeds and when the tiny methane-munchers get going.

Large quantities of the greenhouse gas methane are stored in the seabed. Fortunately, only a small fraction of the methane reaches the atmosphere, where it acts as a climate-relevant gas, as it is largely degraded within the sediment.


The surroundings of Håkon Mosby. Freshly erupted muds flow across older muds covered with white mats of bacteria. The observatory LOOME spent 1 year on the seafloor taking pictures and measurements.

Woods Hole Oceanographic Institution


The submersible takes samples in the mud around Håkon Mosby mud volcano. With this tube, sediment cores can be taken, which allow an insight into the community of organisms on-site.

MARUM – Centre for Marine Environmental Sciences, University of Bremen

This degradation is carried out by a specialized community of microbes, which removes up to 90 percent of the escaping methane. Thus, these microbes are referred to as the “microbial methane filter”. If the greenhouse gas were to rise through the water and into the atmosphere, it could have a significant impact on our climate.

But not everywhere the microbes work so efficiently. On sites of the seafloor that are more turbulent than most others – for example gas seeps or so-called underwater volcanoes -, the microbes remove just one tenth to one third of the emitted methane. Why is that? Emil Ruff and his colleagues from the Max Planck Institute for Marine Microbiology and the University of Bremen aimed to answer this question.

Methane consumption around a mud volcano

In the North Sea off Norway at 1250 meters water depth lies the Håkon Mosby mud volcano. There, warm mud from deeper layers rises to the surface of the seafloor. In a long-term experiment, Ruff and his colleagues were able to film the eruption of the mud, take samples and examine them closely. “We found significant differences in the different communities on-site. In fresh, recently erupted mud there were hardly any organisms.

The older the mud, the more life it contained”, says Ruff. Within a few years after the eruption, the number of microorganisms as well as their diversity increased tenfold. Also, the metabolic activity of the microbial community increased significantly over time. While there were methane consumers even in the young mud, efficient filtering of the greenhouse gas seems to occur only after decades.

“This study has given us new insights into these unique communities," says Ruff. "But it also shows that these habitats need to be protected. If the methane-munchers are to continue to help remove the methane, then we must not destroy their habitats with trawling and deep-sea mining. These habitats are almost like a rainforest - they take decades to grow back after a disturbance. "

International deep-sea research

Antje Boetius, co-author of the study, director of the Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI) and head of the research group for deep-sea ecology and technology at the Max Planck Institute in Bremen and the AWI, emphasizes the importance of national and international research cooperations to achieve such research results:

"This study was only possible through the long-term cooperation between the AWI, the MARUM - Center for Environmental Sciences of the University of Bremen and the Max Planck Institute for Marine Microbiology with international partners in Norway, France and Belgium. Through various EU projects, we have been able to use unique deep-sea technologies to study the Håkon Mosby mud volcano and its inhabitants in great detail”, says Boetius.

Background information: Håkon Mosby mud volcano

Named after the Norwegian oceanographer Håkon Mosby, this mud volcano was discovered in 1990 by an international team of researchers in the Barents Sea at a depth of 1250 meters. Besides water and mud, also gas emerges from the center of the volcano, which covers approximately one square kilometre. The gas, which rises from about two kilometres below the sea floor, consists of 99 percent methane.
Håkon Mosby is a very flat mud volcano with a maximum height of ten meters. Surrounding the crater are three distinct circular zones: the center, the middle and the outer ring. Entirely different communities inhabit these three zones, yet they have one thing in common: methane is the main food source of the organisms on site. Most of the gas is consumed in the outer zone, which can be explained as follows: In the central and middle zone large quantities of methane are available, however there is a lack of oxygen or sulfate required to oxidize the methane. In the outer zone, the situation is different: Tubeworms, which grow up to 60 cm deep into the seafloor, actively pump seawater and thereby sulfate into deeper layers of the sediment. Thanks to these “living pumps”, organisms living at their “roots” can use methane even in regions where that normally wouldn’t be possible. There, hardly any gas escapes to the water column. This clearly shows how the complex interaction of communities on and in the ocean floor is a prerequisite for the development of an efficient biological filter for a greenhouse gas.

Wissenschaftliche Ansprechpartner:

Dr. Emil Ruff
University of Calgary
Email: emil.ruff@ucalgary.ca
Telefon: +1 (403) 210-7457

Dr. Fanni Aspetsberger
Max-Planck-Institut für Marine Mikrobiologie
Email: presse@mpi-bremen.de
Telefon: +49 421 2028 947

Originalpublikation:

S. E. Ruff, J. Felden, H. R. Gruber-Vodicka, Y. Marcon, K. Knittel, A. Ramette, A. Boetius: In situ development of a methanotrophic microbiome in deep-sea sediments. The ISME Journal. Published online 28 August 2018.
https://www.nature.com/articles/s41396-018-0263-1
https://doi.org/10.1038/s41396-018-0263-1

Weitere Informationen:

http://Video footage from Håkon Mosby Mud Volcano: https://www.youtube.com/watch?v=UzYFzpCui2U
http://Earlier press release on HMMV: https://www.mpi-bremen.de/en/Research-at-the-Haakon-Mosby-Mud-Volcano.html

Dr. Fanni Aspetsberger | Max-Planck-Institut für Marine Mikrobiologie

More articles from Earth Sciences:

nachricht Geochemists measure new composition of Earth’s mantle
17.09.2019 | Westfälische Wilhelms-Universität Münster

nachricht Low sea-ice cover in the Arctic
13.09.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stevens researchers to develop handheld device to diagnose skin cancer

18.09.2019 | Medical Engineering

Elusive compounds of greenhouse gas isolated by Warwick chemists

18.09.2019 | Life Sciences

Scientists create fully electronic 2-dimensional spin transistors

18.09.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>