Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mangroves and their significance for climate protection

26.03.2019

Many studies suggest that mangroves are gigantic carbon reservoirs and an important factor for climate protection. But so far there has been no precise calculation of how much carbon a mangrove forest stores in a given period of time. Such figures, however, are extremely relevant for climate protection programmes and emissions trading. A research team from the Leibniz Centre for Tropical Marine Research (ZMT) is now providing accumulation rates for Indonesian mangroves.

High concentrations of CO2 in the atmosphere and the associated global warming are increasing the awareness that it is imperative to preserve the carbon sinks of our planet referring to ecosystems that store particularly large amounts of carbon, such as the oceans or peat swamps on land.


Deep mud layers make walking in a mangrove difficult, here in Brazil

Photo: Martin Zimmer, Leibniz Centre for Tropical Marine Research


Extraction of a sediment core in a mangrove in the eastern part of the Segara Anakan Lagoon, Indonesia

Photo: Tim Jennerjahn, Leibniz Centre for Tropical Marine Research

Mangroves also help to protect climate: they are highly efficient carbon stores. As forests at the transition between land and sea, they are exposed to the tides and are regularly flooded. The thicket of their stilts and aerial roots, however, retains the sediment in the forest floor and prevents it from being washed out.

Enormous amounts of organic material accumulate in the silt: fallen leaves, dead wood and roots, fish and crab excreta, and deposited material from rivers and tides. The mud layers can be several metres thick.

In order to assess the efficiency of mangroves as carbon reservoirs, carbon stocks in the soil are being measured. In 2011, US scientists, for example, have determined the amount of carbon present in sediment: they found an average of more than 1,000 tons per hectare, four times as much as in tropical rainforests. Overall, the researchers estimated that between four and 20 billion tons of carbon are stored in the tidal forests.

“However, the value of the carbon stock in the sediment alone is misleading when it comes to the actual performance of a mangrove forest as a sink, because the organic material can have accumulated in the soil in 10, 100 or 1,000 years," comments biogeochemist Tim Jennerjahn of ZMT in Bremen, “The value only indicates how much carbon could be released if the mangroves were destroyed. But if we want to assess how much CO2 the mangrove forests currently absorb from the atmosphere, we have to calculate the carbon accumulation rates.”

Jennerjahn and his team investigated mangrove forests in Indonesia – on Java, Kalimantan and one of the Thousand Islands. They extracted sediment cores, dated them and determined the carbon accumulation rates per hectare and year. For their calculations, they also considered the aboveground biomass of the forest.

In the course of their investigations it became increasingly clear that the figures for the carbon stock on the one hand and the carbon accumulation rates on the other hand can differ considerably due to environmental conditions. In the east of the Segara Anakan lagoon on Java, for example, the mangrove forest directly borders the lagoon.

In addition to the biomass of the forest, the tides flush a lot of organic material into the mangrove. A high carbon stock of 450 tons per hectare is opposed by a low carbon accumulation rate of 20 tons.

In the west of the lagoon, on the other hand, the mangrove forest borders a river estuary. Especially during the monsoon season, the water masses of the Citanduy River transport large quantities of sediment from the volcanic hinterland and deposit it in the mangrove forest. The high sand content leads to a relatively low carbon stock of less than 200 tonnes per hectare, while the carbon accumulation rate is ten times higher than in the eastern part of the lagoon.

For countries such as Indonesia, India or Bangladesh, mangroves could play an important role in global emissions trading in the future. In the United Nations REDD Programme for “Reducing Emissions from Deforestation and Destructive Forest Use”, an instrument of international climate protection policy, mangroves are increasingly being taken into account. “In order to assess the relevance of mangroves as carbon sinks, it is therefore extremely important to have reliable figures,” says Jennerjahn.

Wissenschaftliche Ansprechpartner:

Dr. Tim Jennerjahn
Leibniz Centre for Tropical Marine Research
Tel: 0421 / 23800-44
tim.jennerjahn@leibniz-zmt.de

Originalpublikation:

Mariska Astrid Kusumaningtyas, Andreas A.Hutahaean, Helmut W. Fischer, Manuel Pérez-Mayo, Daniela Ransby, Tim C.Jennerjahn: Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuarine, Coastal and Shelf Science, Volume 218, 5 March 2019. https://doi.org/10.1016/j.ecss.2018.12.007

Dr. Susanne Eickhoff | idw - Informationsdienst Wissenschaft
Further information:
http://www.leibniz-zmt.de

More articles from Earth Sciences:

nachricht "Flight recorder" of rocks within the Earth’s crust
16.04.2019 | Universität Bern

nachricht More than 90% of glacier volume in the Alps could be lost by 2100
09.04.2019 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>