Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First direct observations of methane's increasing greenhouse effect at the Earth's surface

03.04.2018

Scientists have directly measured the increasing greenhouse effect of methane at the Earth's surface for the first time. A research team from the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) tracked a rise in the warming effect of methane - one of the most important greenhouse gases for the Earth's atmosphere - over a 10-year period at a DOE field observation site in northern Oklahoma.

These findings were published online April 2 in the journal Nature Geoscience in an article entitled "Observationally derived rise in methane surface forcing mediated by water vapour trends." The paper indicates that the greenhouse effect from methane tracked the global pause in methane concentrations in the early 2000s and began to rise at the same time that the concentrations began to rise in 2007.


The scientists used radiometers, shown here, to isolate the signal of methane's greenhouse effect. Radiometers are among the many instruments at ARM's Southern Great Plains observatory that the team utilized as part of this study.

Credit: ARM Climate Research Facility


This graph shows a time series of the greenhouse effect of methane in Watts per square meter, measured at the Earth's surface over a ten-year period at a research site in northern Oklahoma. The red line is the trend in the time series, and the grey shading represents uncertainty.

Credit: Berkeley Lab

"We have long suspected from laboratory measurements, theory, and models that methane is an important greenhouse gas," said Berkeley Lab Research Scientist Dan Feldman, the study's lead author. "Our work directly measures how increasing concentrations of methane are leading to an increasing greenhouse effect in the Earth's atmosphere."

Gases that trap heat in the atmosphere are called greenhouse gases, in large part because they absorb certain wavelengths of energy emitted by the Earth. As their atmospheric concentrations change, the scientific community expects the amount of energy absorbed by these gases to change accordingly, but prior to this study, that expectation for methane had not been confirmed outside of the laboratory.  

The scientists analyzed highly calibrated long-term measurements to isolate the changing greenhouse effect of methane. They did this by looking at measurements over the wavelengths at which methane is known to exert its greenhouse effect and coupled those with a suite of other atmospheric measurements to control for other confounding factors, including water vapor.

This study was enabled by the comprehensive measurements of the Earth's atmosphere that the DOE has routinely collected for decades at its Atmospheric Radiation Measurement (ARM) facilities, and conversely, would not be possible without such detailed observations.

The DOE ARM program manages and supports three long-term atmospheric observatories - the Southern Great Plains observatory in Oklahoma, the North Slope of Alaska observatory in far-northern Alaska, and the Eastern North Atlantic observatory on the Azores Islands. The program also deploys three ARM mobile facilities and several ARM aerial facilities. Together, these assets enable scientists to perform highly-detailed, targeted investigations to advance the fundamental scientific understanding of the Earth system.

The researchers believe this type of direct field observation can provide a more accurate and complete picture of the relationship between atmospheric greenhouse gas concentrations and their warming effect on Earth's surface.

###

The research was funded by the Department of Energy's Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Dan Krotz
DAKrotz@lbl.gov
510-486-4019

 @BerkeleyLab

http://www.lbl.gov 

Dan Krotz | EurekAlert!
Further information:
https://www.eurekalert.org/pub_releases/2018-04/dbnl-fdo033018.php

Further reports about: Atmosphere greenhouse greenhouse effect greenhouse gas wavelengths

More articles from Earth Sciences:

nachricht Volcanoes under pressure
18.11.2019 | Technical University of Munich (TUM)

nachricht New findings on the largest natural sulfur source in the atmosphere
18.11.2019 | Leibniz-Institut für Troposphärenforschung e. V.

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>