Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme climate change linked to early animal evolution

27.09.2012
UC Riverside geoscientists help tie spike in ancient oceanic oxygen levels to 'Snowball Earth' event

An international team of scientists, including geochemists from the University of California, Riverside, has uncovered new evidence linking extreme climate change, oxygen rise, and early animal evolution.


This photo shows researchers studying exposures of the Doushanto Formation. Located in China, the formation is most notable for its scientific contributions in the hunt for Precambrian life.

Credit: M. Kennedy

A dramatic rise in atmospheric oxygen levels has long been speculated as the trigger for early animal evolution. While the direct cause-and-effect relationships between animal and environmental evolution remain topics of intense debate, all this research has been hampered by the lack of direct evidence for an oxygen increase coincident with the appearance of the earliest animals — until now.

In the Sept. 27 issue of the journal Nature, the research team, led by scientists at the University of Nevada, Las Vegas, offers the first evidence of a direct link between trends in early animal diversity and shifts in Earth system processes.

The fossil record shows a marked increase in animal and algae fossils roughly 635 million years ago. An analysis of organic-rich rocks from South China points to a sudden spike in oceanic oxygen levels at this time — in the wake of severe glaciation. The new evidence pre-dates previous estimates of a life-sustaining oxygenation event by more than 50 million years.

"This work provides the first real evidence for a long speculated change in oxygen levels in the aftermath of the most severe climatic event in Earth's history — one of the so-called 'Snowball Earth' glaciations," said Timothy Lyons, a professor of biogeochemistry at UC Riverside.

The research team analyzed concentrations of trace metals and sulfur isotopes, which are tracers of early oxygen levels, in mudstone collected from the Doushantuo Formation in South China. The team found spikes in concentrations of the trace metals, denoting higher oxygen levels in seawater on a global scale.

"We found levels of molybdenum and vanadium in the Doushantuo Formation mudstones that necessitate that the global ocean was well ventilated. This well-oxygenated ocean was the environmental backdrop for early animal diversification," said Noah Planavsky, a former UCR graduate student in Lyons's lab now at CalTech.

The high element concentrations found in the South China rocks are comparable to modern ocean sediments and point to a substantial oxygen increase in the ocean-atmosphere system around 635 million years ago. According to the researchers, the oxygen rise is likely due to increased organic carbon burial, a result of more nutrient availability following the extreme cold climate of the 'Snowball Earth' glaciation when ice shrouded much of Earth's surface.

Lyons and Planavsky argued in research published earlier in the journal Nature that a nutrient surplus associated with the extensive glaciations may have initiated intense carbon burial and oxygenation. Burial of organic carbon — from photosynthetic organisms — in ocean sediments would result in the release of vast amounts of oxygen into the ocean-atmosphere system.

"We are delighted that the new metal data from the South China shale seem to be confirming these hypothesized events," Lyons said.

The joint research was supported by grants from the National Science Foundation, the NASA Exobiology Program, and the National Natural Science Foundation of China. Besides Lyons and Planavsky, the research team includes Swapan K. Sahoo (first author of the research paper) and Ganqing Jiang (principal investigator of the study) of the University of Nevada, Las Vegas; Brian Kendall and Ariel D. Anbar of Arizona State University; Xinqiang Wang and Xiaoying Shi of the China University of Geosciences (Beijing); and UCR alumnus Clint Scott of United States Geological Survey.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Earth Sciences:

nachricht Responses of benthic foraminifera to changes of temperature and salinity
14.01.2019 | Science China Press

nachricht 'Realistic' new model points the way to more efficient and profitable fracking
14.01.2019 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>