Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Explosive volcanoes fueled by water, say Oregon researchers

07.05.2015

Computer modeling driven by data gleaned from Mount Lassen basalt opens window on water's role deep in the Earth and on the surface

University of Oregon geologists have tapped water in surface rocks to show how magma forms deep underground and produces explosive volcanoes in the Cascade Range.


A snowy cinder cone on Mount Lassen in Northern California, where University of Oregon researchers collected samples for their study on magma formation. They determined that the water cycle plays a key role in explosive volcanoes in the Cascade Range.

Photo by Marli Miller, University of Oregon

"Water is a key player," says Paul J. Wallace, a professor in the UO's Department of Geological Sciences and coauthor of a paper in the May issue of Nature Geoscience. "It's important not just for understanding how you make magma and volcanoes, but also because the big volcanoes that we have in the Cascades -- like Mount Lassen and Mount St. Helens -- tend to erupt explosively, in part because they have lots of water."

A five-member team, led by UO doctoral student Kristina J. Walowski, methodically examined water and other elements contained in olivine-rich basalt samples that were gathered from cinder cone volcanoes that surround Lassen Peak in Northern California, at the southern edge of the Cascade chain.

The discovery helps solve a puzzle about plate tectonics and the Earth's deep water cycle beneath the Pacific Ring of Fire, which scientists began studying in the 1960s to understand the region's propensity for big earthquakes and explosive volcanoes. The ring stretches from New Zealand, along the eastern edge of Asia, north across the Aleutian Islands of Alaska and south along the coast of North and South America. It contains more than 75 percent of the planet's volcanoes.

To understand how water affects subduction of the oceanic plate, in which layers of different rock types sink into the mantle, the UO team studied hydrogen isotopes in water contained in tiny blobs of glass trapped in olivine crystals in basalt.

To do so, the team used equipment in Wallace's lab, CAMCOR, the Carnegie Institution in Washington, D.C., and a lab at Oregon State University. CAMCOR is UO's Advanced Materials Characterization in Oregon, a high-tech extension service located in the underground Lorry I. Lokey Laboratories.

Next, the team fed data gained from the rocks into a complex computer model developed by co-author Ikudo Wada, then of Japan's Tohoku University. She has since joined the University of Minnesota.

That combination opened a window on how rising temperatures during subduction drive water out of different parts of the subducted oceanic crust, Walowski said. Water migrates upwards and causes the top of the subducted oceanic crust to melt, producing magma beneath the Cascade volcanoes.

The key part of the study, Wallace said, involved hydrogen isotopes. "Most of the hydrogen in water contains a single proton," he said. "But there's also a heavy isotope, deuterium, which has a neutron in addition to the proton. It is important to measure the ratio of the two isotopes. We use this ratio as a thermometer, or probe, to study what's happening deep inside the earth."

"Melting of the subducting oceanic crust and the mantle rock above it would not be possible without the addition of water," Walowski said. "Once the melts reach the surface, the water can directly affect the explosiveness of magma. However, evidence for this information is lost to the atmosphere during violent eruptions."

###

The National Science Foundation (grant EAR-1119224) and Carnegie Institution supported the research. Other coauthors were E.H. Hauri of the Carnegie Institution and M.A. Clynne of the U.S. Geological Survey.

Sources: Paul Wallace, professor of geosciences, 541-346-5985, pwallace@uoregon.edu, and Kristina Walowski, graduate teaching fellow, Department of Geological Sciences, walowski@uoregon.edu

Note: The UO is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks via a fiber optic network. In addition, there is video access to satellite uplink, and audio access to an ISDN codec for broadcast-quality radio interviews.

Links:

Paper: http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2417.html

About Walowski: http://geology.uoregon.edu/profile/walowski/

About Wallace: http://geology.uoregon.edu/profile/pwallace/

Department of Geological Sciences: http://geology.uoregon.edu/

Ars Technica coverage: http://arstechnica.com/science/2015/04/23/magma-beneath-the-cascade-volcanoes-might-be-special-blend/

Media Contact

Jim Barlow
jebarlow@uoregon.edu
541-346-3481

 @UOregonNews

http://uonews.uoregon.edu 

Jim Barlow | EurekAlert!

Further reports about: Carnegie Geological explosive explosive volcanoes isotopes magma mantle oceanic crust volcanoes

More articles from Earth Sciences:

nachricht Abrupt cloud clearing events over southeast Atlantic Ocean are new piece in climate puzzle
23.07.2018 | University of Kansas

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>