Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Conditions Determine Amazon Fire Risk

10.06.2013
Using an innovative satellite technique, NASA scientists have determined that a previously unmapped type of wildfire in the Amazon rainforest is responsible for destroying several times more forest than has been lost through deforestation in recent years.

In the southern Amazon rainforest, fires below the forest treetops, or "understory fires," have been hidden from view from NASA satellites that detect actively burning fires. The new method has now led to the first regional estimate of understory fire damages across the southern Amazon.


Researchers for the first time mapped the extent and frequency of understory fires across a study area (green) spanning 1.2 million square miles (3 million square kilometers) in the southern Amazon forest. Fires were widespread across the forest frontier during the study period from 1999-2010. Recurrent fires, however, are concentrated in areas favored by the confluence of climate conditions suitable for burning and ignition sources from humans. Credit: NASA's Earth Observatory

"Amazon forests are quite vulnerable to fire, given the frequency of ignitions for deforestation and land management at the forest frontier, but we've never known the regional extent or frequency of these understory fires," said Doug Morton of NASA's Goddard Space Flight Center in Greenbelt, Md., and the study's lead author. The study was published April 22 in Philosophical Transactions of the Royal Society B.

In years with the highest understory fire activity, such as 2005, 2007 and 2010, the area of forest affected by understory fires was several times greater than the area of deforestation for expansion of agriculture, according to Morton.

The study goes further and fingers climate conditions – not deforestation – as the most important factor in determining fire risk in the Amazon at a regional scale.

Uncovering the Story Behind Understory Fires

Fires in the Amazon's savanna areas can burn quickly, spreading up to 330 feet (100 meters) per minute. Grasses and shrubs in these ecosystems typically survive low-intensity surface fires.

In contrast, understory fires at the frontier and beyond appear "unremarkable when you see them burning," Morton said. Flames reach on average only a few feet high, visible from the air as ribbons of smoke that escape through the canopy. They may burn for weeks at a time, spreading only a few feet (0.5 meters) per minute.

Understory fires, however, can damage large areas because Amazon trees are not adapted to fire. The long, slow burn gives way to a creeping death that claims anywhere from 10 to 50 percent of the burn area's trees. Recovery is also a long and slow, but observable, process.

To identify understory fires, Morton and colleagues used observations from early in the dry season, from June to August, collected by the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument on NASA's Terra satellite. They tracked the timing of fire damage and recovery, which varies depending on the type of forest disturbance. Areas of deforestation, for example, show up in satellite imagery as land that continues to lack signs of recovery for at least two consecutive years. Conversely, signs of forest degradation from understory fires, visible in the year after the burn, dissipate quickly as the forest regrows. This pattern of damage and recovery over multiple years provides a unique fingerprint of understory fire damages in Amazon forests.

The study shows that between 1999 and 2010, understory forest fires burned more than 33,000 square miles (85,500 square kilometers), or 2.8 percent of the forest. Results also show no correlation between understory fires and deforestation. As the pressure for clearing led to the highest deforestation rates ever seen from 2003 to 2004, adjacent forests had some of the lowest rates of fires.

"You would think that deforestation activity would significantly increase the risk of fires in the adjacent forested area because deforestation fires are massive, towering infernos," Morton said. "You make a bonfire that is a square kilometer in size, throwing ash and live cinders and preheating the adjacent forest. Why didn't we have more understory fires in 2003 and 2004, when deforestation rates were so high?"

The researchers point to climate as the reason that fire-driven deforestation didn’t burn more surrounding forests in these years. Frequent understory fire activity coincides with low nighttime humidity, as measured by the Atmospheric Infrared Sounder, or AIRS, instrument aboard NASA's Aqua satellite. Scientists say the connection points to a strong climate control on Amazon fires.

"You can look within an indigenous reserve where there is no deforestation and see enormous understory fires," Morton said. "The human presence at the deforestation frontier leads to a risk of forest fires when climate conditions are suitable for burning, with or without deforestation activity."

Ignition could come from cooking, camping, cigarettes, cars, agricultural waste burning, or any number of human sources.

The new knowledge about the scope of understory fires could have implications for estimates of carbon emissions from disturbed forests. How experts account for those emissions depends on the fate of the forest – how it is disturbed and how it recovers.

"We don't yet have a robust estimate of what the net carbon emissions are from understory fires, but widespread damages suggest that they are important source of emissions that we need to consider," Morton said.

For now, scientists are looking into the climate mechanisms that, given an ignition source from humans, predispose the southern Amazon to burn.

Soil Moisture as a Fire Indicator

Already, scientists at University of California, Irvine, have delved deeper into the climate-fire connection. New research shows that satellite-based measurements of the region's soil moisture could supplement and sharpen fire season forecasts across the southern Amazon.

The first forecast in 2012 and new forecast for 2013 , led by Jim Randerson at UC Irvine, are based on a model that primarily considers historical fire data from MODIS instruments along with sea surface temperature data from NOAA. Previous research has shown sea surface temperature to be a good indicator of the pending Amazon fire season severity.

Now, scientists are interested in fine-tuning the model across smaller geographic regions and finer timescales. Toward that goal, Yang Chen of UC Irvine and colleagues show that water storage estimates from NASA's Gravity Recovery and Climate Experiment, or GRACE, satellites allow monitoring of the evolution of dry conditions during the fire season.

Transpiration and evaporation are two ways that water is transported from the ground to the atmosphere. Low water storage in the soil leads to a drier near-ground atmosphere. The result is drier, more flammable vegetation alongside increases in plant litter and fuel availability. Chen's research was published online April 11 in the American Geophysical Union's Journal of Geophysical Research – Biogeosciences.

"A severe fire season in the Amazon is often preceded by low water storage in the soil, and this water deficit in the soil can be detected by the satellites several months before the fire season," Chen said.

Soil water storage in the southern Amazon in June is a key indicator of fire season severity. “The GRACE measurements provide unique and precise information about land water storage that changes completely the way we can look at fire prediction,” said Isabella Velicogna of UC Irvine and NASA's Jet Propulsion Laboratory in Pasadena, Calif., who lead the GRACE analysis.

While the water storage estimates are not yet officially part of Randerson and colleagues' forecasts, the study "charts the course forward to leverage GRACE data for operational purposes," Morton said. "The ability to integrate observations from many different NASA instruments is really a hallmark of Earth- system science. In this case, the science also has important, practical applications to mitigating the impacts of fires on the Amazon region and global climate."

Kathryn Hansen
NASA Goddard Space Flight Center, Greenbelt, Md.

Kathryn Hansen | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/amazon-fire-risk.html

More articles from Earth Sciences:

nachricht Seismic study reveals huge amount of water dragged into Earth's interior
18.12.2018 | National Science Foundation

nachricht A damming trend
17.12.2018 | Michigan State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Scientists to give artificial intelligence human hearing

19.12.2018 | Information Technology

Newly discovered adolescent star seen undergoing 'growth spurt'

19.12.2018 | Physics and Astronomy

From a plant sugar to toxic hydrogen sulfide

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>