Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

By 2100, arid cities will suffer from more severe heat waves than temperate cities

13.02.2018

Heat waves are among the deadliest and most common of environmental extremes. As the earth continues to warm due to the buildup of greenhouse gases, heat waves are expected to become more severe, particularly for cities, where concrete and a dearth of trees create what's known as the urban heat island effect.

Using a global climate model, a team led by Princeton University researchers measured how severely heat waves interact with urban heat islands, now and in the future, in 50 American cities across three climate zones.


By 2100, arid cities like Phoenix will become hotbeds for heatwaves compared to their rural surroundings, while cities on the eastern seaboard will be less severely affected by heatwaves compared to theirs. The findings highlight the importance of heat-mitigation strategies and infrastructures such as green roofs.

Credit: Egan Jimenez, Woodrow Wilson School

In terms of relative temperature increase, today's eastern and southeastern cities are more severely affected by heat waves than arid and semiarid western cities. This is because of the amount of impenetrable, concrete surfaces and lack of moisture in eastern and southeastern cities compared to their rural surroundings. In contrast, both rural and urban dry environments experience similar temperature increases, and both have less annual rainfall than their eastern and southeastern counterparts.

However, by 2100, this is expected to flip. Arid cities like Phoenix will become hotbeds for heatwaves compared to their rural surroundings, while cities on the eastern seaboard will be less severely affected by heatwaves compared to theirs. This is because future arid cities will remain water-limited due to the lack of permeable surfaces in cities, while their rural neighbors are projected to be no longer "dry" due to higher rainfall. The overuse of air conditioners also emits heat into the urban heat islands, playing a significant role.

... more about:
»heat waves »rainfall »urban heat islands

The findings are tied to urban-rural development. A city's water availability, through rainfall or irrigation, dictates its evaporative cooling effects on temperature, which reduces the severity of a heat wave. In other words, cities with more moisture will cool more quickly.

"Given that 50 percent of the world's population currently lives in cities, and that percentage is projected to increase to 70 percent by year 2050, there is a pressing need to understand how cities and landscapes are affected by heat waves," said Lei Zhao, a postdoctoral research associate at Princeton's Program in Science, Technology, and Environmental Policy (STEP), which is based at the Woodrow Wilson School of Public and International Affairs. "Our study explains why cities suffer even more during extreme heat events and highlights the heat risks that urban residents face now and in the projected future."

The findings, published in Environmental Research Letters, highlight the importance of heat-mitigation strategies and infrastructures such as green roofs -- in which vegetation transfers moisture from the earth to the atmosphere by evaporation of water and transpiration from plants.

The research team used a global climate model to measure present-day conditions (1975 through 2004) and future scenarios (2071 through 2100), both at daytime and at night. They restricted their daytime analysis to every day in June through August between 1-3 p.m., when temperatures usually peak. For nighttime estimates, they used midnight, when temperatures are coolest.

Of the 50 cities selected for the study, 21 were in temperate climate zones, 14 were in continental climates, and 15 were in dry climates. Temperate climate zones experience all four seasons with a variety of temperatures throughout the year. Continental climates -- where Chicago is located, for example -- are known for being relatively dry with very hot summers and very cold winters. Dry and arid climates are usually desert-like with low precipitation and wide temperature swings both daily and seasonally.

The researchers focused on temperate and dry regions to draw the humidity contrasts between these two distinct zones. They measured continental climates because they also experience deadly heat, despite being located in colder climates.

For the daytime findings, the researchers showed that today's temperate cities are water-limited, while their rural counterparts have plenty of water through ample rainfall. Therefore, cities in temperate zones experience more severe heat waves today. Today's dry regions -- both urban and rural -- are both water-limited, the researchers found, because of less rainfall overall.

By 2100, this will flip. Rainfall is expected to increase overall in both climates in the future, but water availability is expected to be limited in dry cities due to impervious surfaces. This, combined with significantly elevated air conditioning energy use during heat waves, contributes significantly to the synergistic effects between heat waves and urban heat islands.

At night, the effects are consistent across climate regions and scenarios, which is concerning. High temperatures at night could cause more heat wave-related deaths, since city dwellers can find no relief.

In terms of health, heatwaves that hit today's wetter cities increase the mortality risk by 3.2 percent. For arid cities in the future, the mortality risk increases by 2.4 percent.

"Health impacts were a key motivation for our study. Heat extremes have adverse effects on human health and increase the risk of death across regions in the world," Zhao said.

"Our findings underscore the importance of implementing heat-mitigation strategies today. They also highlight the need for more studies of this nature to give us a better idea of the cities and landscapes that are most affected now and also under additional greenhouse warming," said co-lead author Michael Oppenheimer, the Albert G. Milbank Professor of Geosciences and International Affairs and the Princeton Environmental Institute at Princeton's Woodrow Wilson School and Department of Geosciences.

###

In addition to Zhao and Oppenheimer, the research team included Princeton co-authors Jane W. Baldwin, a graduate student in the Program in Atmospheric and Oceanic Sciences; and Elie Bou-Zeid, associate professor of civil and environmental engineering. The team also included Qing Zhu and Xu Lu, both from the Lawrence Berkeley National Laboratory; Kristie L. Ebi, University of Washington, Department of Global Health; and Kaiyu Guan, University of Illinois at Urbana-Champaign, Department of Natural Resources and Environmental Sciences and National Center for Supercomputing Applications.

The paper, "Interactions between urban heat islands and heat waves," first appeared online as an accepted manuscript Dec. 6, 2017, in Environmental Research Letters.

The research was supported by Princeton's Carbon Mitigation Initiative and a High Meadows Foundation Fellowship in the Program in Science, Technology, and Environmental Policy, which is based at Princeton's Woodrow Wilson School.

Bou-Zeid is supported by the U.S. National Science Foundation's (NSF) Sustainability Research Network Cooperative Agreement #1444758 and grant # ICER 1664091.

The researchers acknowledge high-performance computing support from Yellowstone, which was provided by the National Center for Atmospheric Research's Computational and Information Systems Laboratory, sponsored by NSF.

Media Contact

B. Rose Kelly
brosekelly@princeton.edu
609-258-0157

 @WilsonSchool

http://wws.princeton.edu 

B. Rose Kelly | EurekAlert!

Further reports about: heat waves rainfall urban heat islands

More articles from Earth Sciences:

nachricht Do ice cores help to unravel the clouds of climate history?
21.06.2019 | Leibniz Institute for Tropospheric Research (TROPOS)

nachricht News from the diamond nursery
21.06.2019 | Goethe-Universität Frankfurt am Main

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>