Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Albedo effect” in forests can cause added warming, bonus cooling

20.10.2011
Wildfire, insect outbreaks and hurricanes destroy huge amounts of forest every year and increase the amount of carbon dioxide entering the atmosphere, but scientists are now learning more about another force that can significantly affect their climate impact.

Researchers conclude in a new study that the albedo effect, which controls the amount of energy reflected back into space, is important in the climatic significance of several types of major forest disturbances.

In some cases – mostly in boreal forests with significant snow cover – increases in reflectivity can provide cooling. If the area disturbed by fire or insects is large, this cooling can substantially offset the increase in global warming that would otherwise be caused by these forest disturbances and the release of greenhouse gases. In other cases where the ground itself is unusually dark, albedo decreases can magnify concerns about warming.

Wildfires are not the only disturbance that significantly alters surface albedo, this study concluded. Insect outbreaks and defoliation by hurricanes can also change surface reflectivity, with effects on climate as great as those caused by carbon dioxide release from the disturbed area.

“On a global scale, warming caused by increased carbon dioxide still trumps everything else,” said Beverly Law, a professor in the Department of Forest Ecosystems and Society at Oregon State University. “On a smaller or local scale, however, changes in albedo can be fairly important, especially in areas with significant amounts of snow, such as high latitudes or higher elevations.”

Albedo is a measure of radiation reflected by a surface, in this case the surface of the planet. Lighter colors such as snow reflect more light and heat back into space than the dark colors of a full forest and tree canopy.

“This decreased absorption of heat by the land surface is a local atmospheric cooling effect,” said Tom O’Halloran, a recent postdoctoral research at OSU who is now with the Department of Environmental Studies at Sweet Briar College. “This was clear in one case we studied of trees killed by mountain pine beetles in British Columbia.

“In areas with substantial snow cover, we found that canopy removal due to either fire or insect attack increased reflected radiation and approximately offset the warming that would be caused by increased release of carbon dioxide,” O’Halloran said. “However, we haven’t been able to measure the full impact from the current beetle outbreak, which could take decades to complete.”

This complex phenomenon would be much less in lower latitudes or areas without snow for much of the year, the researchers said. It relates primarily to boreal or colder mid-latitude forests, such as the Canadian insect outbreak over 374,000 square kilometers of forest.

“The impacts of insects on forest carbon dynamics and resulting changes in albedo are generally ignored in large-scale modeling,” Law said.

The study also found that forest disturbance does not always cause an albedo increase. When Hurricane Wilma in 2005 partially defoliated more than 2,400 square kilometers of a mangrove forest in the Florida Everglades, it exposed an underlying land surface darker than the previous forest canopy. In that case, an albedo decrease effectively doubled the warming impact of released carbon dioxide.

All of the forces studied in this research – fire, insect attack and hurricanes – are expected to increase in severity, frequency or extent under climate change scenarios, the scientists said. In the United States alone, these events affect 20,000 to 40,000 square kilometers of forest a year. If Earth system models are to be accurate, this makes it important to more accurately incorporate changes in albedo.

Globally, forest disturbances are a major factor in the carbon cycle and greenhouse gas warming. They can instantly switch forests from carbon sinks into carbon sources for two decades or more. In cold regions where forest recovery is slower, albedo increases can persist for 100 years.

This research was published in Global Change Biology, a professional journal. It was supported by the U.S. Department of Energy, and used data from both the AmeriFlux Network and NASA MODIS sensor on the Terra satellite.

About the OSU College of Forestry: For a century, the College of Forestry has been a world class center of teaching, learning and research. It offers graduate and undergraduate degree programs in sustaining ecosystems, managing forests and manufacturing wood products; conducts basic and applied research on the nature and use of forests; and operates 14,000 acres of college forests.

Media Contact
David Stauth,
541-737-0787
Source
Beverly Law, 541-737-6111

Beverly Law | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Earth Sciences:

nachricht Geochemists measure new composition of Earth’s mantle
17.09.2019 | Westfälische Wilhelms-Universität Münster

nachricht Low sea-ice cover in the Arctic
13.09.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>