Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards highly integrated telecommunication function

07.01.2002


Philips and DIMES found the Philips Associated Centre (PACD) at DIMES
Towards highly integrated telecommunication function


Philips has chosen TU Delft`s Institute for Micro-electronics en Submicron-technology (DIMES) to host a large research programme. The goal of this Philips Associated Centre at Dimes (PACD) is research on the integration of complete telecommunication systems into silicon technology, leading to drastic miniaturisation and reduced production costs. The six year collaboration involves an extensive financing programme for the researchers, materials and process costs, making it the largest externally funded programme in the history of DIMES.


Personal digital agendas, advanced mobile communication, wireless local and wide-area networks, ultra fast optical networks and electronic labels for identification of products in warehouses and super-markets, just some of the possibilities. The development of new communication products for a large number of users in a growing market is happening very rapidly.

Low costs are important in the production of consumer products for the masses. Large scale and cheap production of silicon chips is attained by integrating different functions onto one chip. Conditions for this integration are: miniaturisation and low energy consumption.
PACD will concentrate on the points of miniaturisation and energy consumption. Projects in the DIMES/Philips research programme vary from research of new materials in silicon processing to the design of high-frequency (RF) and millimetre-wave systems.

In the case of materials, new materials are tested, for example, for better high-frequency behaviour. These materials could make faster and smaller chips possible. In this field, Philips has been developing ‘Silicon-On-Anything’ (SOA) technology. Other projects at the PACD concerning SOA technology are aimed at three-dimensional integration and device packaging, using a special wafer processing of high-frequency circuits. Wafer-scale packaging makes it possible to run process stages parallel to each other, reducing costs and increasing production. As part of the PACD-programme agreement, Philips has given DIMES permission to use SOA technology.

The PACD will run for six years, and is, up to now, the largest externally financed programme of DIMES (which has existed for fifteen years now). Philips` choice for DIMES is a result of the already existing intensive co-operation between the two during the last few years.

Maarten van der Sanden | alphagalileo

More articles from Communications Media:

nachricht New cruise ship “Mein Schiff 1” features Fraunhofer 3D sound on board
05.09.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht Small enclosure, big sound, clear speech
31.08.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>