Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards highly integrated telecommunication function

07.01.2002


Philips and DIMES found the Philips Associated Centre (PACD) at DIMES
Towards highly integrated telecommunication function


Philips has chosen TU Delft`s Institute for Micro-electronics en Submicron-technology (DIMES) to host a large research programme. The goal of this Philips Associated Centre at Dimes (PACD) is research on the integration of complete telecommunication systems into silicon technology, leading to drastic miniaturisation and reduced production costs. The six year collaboration involves an extensive financing programme for the researchers, materials and process costs, making it the largest externally funded programme in the history of DIMES.


Personal digital agendas, advanced mobile communication, wireless local and wide-area networks, ultra fast optical networks and electronic labels for identification of products in warehouses and super-markets, just some of the possibilities. The development of new communication products for a large number of users in a growing market is happening very rapidly.

Low costs are important in the production of consumer products for the masses. Large scale and cheap production of silicon chips is attained by integrating different functions onto one chip. Conditions for this integration are: miniaturisation and low energy consumption.
PACD will concentrate on the points of miniaturisation and energy consumption. Projects in the DIMES/Philips research programme vary from research of new materials in silicon processing to the design of high-frequency (RF) and millimetre-wave systems.

In the case of materials, new materials are tested, for example, for better high-frequency behaviour. These materials could make faster and smaller chips possible. In this field, Philips has been developing ‘Silicon-On-Anything’ (SOA) technology. Other projects at the PACD concerning SOA technology are aimed at three-dimensional integration and device packaging, using a special wafer processing of high-frequency circuits. Wafer-scale packaging makes it possible to run process stages parallel to each other, reducing costs and increasing production. As part of the PACD-programme agreement, Philips has given DIMES permission to use SOA technology.

The PACD will run for six years, and is, up to now, the largest externally financed programme of DIMES (which has existed for fifteen years now). Philips` choice for DIMES is a result of the already existing intensive co-operation between the two during the last few years.

Maarten van der Sanden | alphagalileo

More articles from Communications Media:

nachricht New cruise ship “Mein Schiff 1” features Fraunhofer 3D sound on board
05.09.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht Small enclosure, big sound, clear speech
31.08.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new look at 'strange metals'

21.01.2020 | Materials Sciences

Body's natural signal carriers can help melanoma spread

21.01.2020 | Health and Medicine

Structual color barcode micromotors for multiplex biosensing

21.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>