Towards highly integrated telecommunication function

Philips and DIMES found the Philips Associated Centre (PACD) at DIMES
Towards highly integrated telecommunication function

Philips has chosen TU Delft`s Institute for Micro-electronics en Submicron-technology (DIMES) to host a large research programme. The goal of this Philips Associated Centre at Dimes (PACD) is research on the integration of complete telecommunication systems into silicon technology, leading to drastic miniaturisation and reduced production costs. The six year collaboration involves an extensive financing programme for the researchers, materials and process costs, making it the largest externally funded programme in the history of DIMES.

Personal digital agendas, advanced mobile communication, wireless local and wide-area networks, ultra fast optical networks and electronic labels for identification of products in warehouses and super-markets, just some of the possibilities. The development of new communication products for a large number of users in a growing market is happening very rapidly.

Low costs are important in the production of consumer products for the masses. Large scale and cheap production of silicon chips is attained by integrating different functions onto one chip. Conditions for this integration are: miniaturisation and low energy consumption.
PACD will concentrate on the points of miniaturisation and energy consumption. Projects in the DIMES/Philips research programme vary from research of new materials in silicon processing to the design of high-frequency (RF) and millimetre-wave systems.

In the case of materials, new materials are tested, for example, for better high-frequency behaviour. These materials could make faster and smaller chips possible. In this field, Philips has been developing ‘Silicon-On-Anything’ (SOA) technology. Other projects at the PACD concerning SOA technology are aimed at three-dimensional integration and device packaging, using a special wafer processing of high-frequency circuits. Wafer-scale packaging makes it possible to run process stages parallel to each other, reducing costs and increasing production. As part of the PACD-programme agreement, Philips has given DIMES permission to use SOA technology.

The PACD will run for six years, and is, up to now, the largest externally financed programme of DIMES (which has existed for fifteen years now). Philips` choice for DIMES is a result of the already existing intensive co-operation between the two during the last few years.

Media Contact

Maarten van der Sanden alphagalileo

Alle Nachrichten aus der Kategorie: Communications Media

Engineering and research-driven innovations in the field of communications are addressed here, in addition to business developments in the field of media-wide communications.

innovations-report offers informative reports and articles related to interactive media, media management, digital television, E-business, online advertising and information and communications technologies.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Researchers break magnetic memory speed record

Advance could lead to new generation of ultrafast computer chips that retain data even when there is no power. Spintronic devices are attractive alternatives to conventional computer chips, providing digital…

Tracing the source of illicit sand–can it be done?

Research presented at the 2020 GSA Annual Meeting. If you’ve visited the beach recently, you might think sand is ubiquitous. But in construction uses, the perfect sand and gravel is…

Location and extent of coral reefs mapped worldwide using advanced AI

Nearly 75% of the world’s coral reefs are under threat from global stressors such as climate change and local stressors such as overfishing and coastal development. Those working to understand…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close