Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Create Free, Downloadable Software Radio Design Tool

18.11.2004


The Mobile and Portable Radio Research Group (MPRG) in Virginia Tech’s Bradley Department of Electrical and Computer Engineering has developed the fundamental software for use in designing software radios and is offering this tool free to other wireless communications researchers throughout the world.



“The tool available on the Virginia Tech website already has been downloaded by numerous companies and universities from around the world,” said Jeffrey Reed, professor of electrical and computer engineering and deputy director of the MPRG. “Software radio technology is today where personal computer technology was in the 1970s,” said Max Robert, the MPRG post-doctoral Fellow who led development of the new tool, “OSSIE” (Open-Source Software Communication Architecture Implementation: Embedded).

Software radios can be any devices that use wireless radio frequency transmission and reception for communications — including cell phones, walkie-talkies, televisions, AM-FM radios, cordless phones, garage door openers, radar, satellites, shortwave radios, pagers and GPS (global positioning systems), to name a few.


Currently, radios of all kinds perform their signal processing — transmitting and receiving — based on dedicated hardware. A combination TV/AM-FM radio operates with two separate radios, one to receive television broadcasts and the other to receive radio broadcasts. Similarly, a combination garage door/car door opener has to be constructed with two distinct transmitters.

This dependence on dedicated hardware limits the function of a radio. For example, a fire chief using a walkie-talkie to contact the walkie-talkie carried by a policeman in a burning building has to hope that the two devices have the same type of dedicated hardware.

Using a software radio, the fire chief could simply load in software designed to communicate with the policeman’s device. This transition would be possible if the signal processing capability were defined by software, rather than by dedicated hardware. In addition, the fire chief’s software radio could communicate with a variety of other devices, such as cell phones.

The concept of software radios has been especially attractive to the U.S. Department of Defense, which years ago established the Joint Tactical Radio System (JTRS) to create general purpose hardware that can operate as software-defined radios.

This is where MPRG’s OSSIE comes into play. OSSIE is an operating environment, or software framework, that is compatible with the JTRS military hardware and is written in C++, a computer programming language commonly used by wireless researchers. OSSIE is an environment within which software radios can be programmed and can operate.

MPRG’s Robert and a team of graduate students first developed OSSIE as a tool for a software radio research project sponsored by the Office of the Director of the Central Intelligence Agency. Robert and Reed soon realized that other researchers could use OSSIE in their development of software radios. They also realized that pooling software with other researchers would add to a collective knowledge base for the creation of a variety of working software radios.

MPRG has made OSSIE an open-source tool, which means that researchers can download it for free and, in turn, are responsible for sharing their findings for free with other researchers. “Offering OSSIE as an open-source tool over the Internet will speed up growth of the technology and make faster innovations possible,” Robert said. “This will benefit all wireless researchers who are working to develop software radios.”

Researchers can download OSSIE from the Virginia Tech MPRG Web site at
http://www.mprg.org/research/ossie.

| newswise
Further information:
http://www.mprg.org/research/ossie
http://www.vt.edu

More articles from Communications Media:

nachricht The plastic brain: Better connectivity of brain regions with training
02.07.2018 | Leibniz-Institut für Wissensmedien

nachricht Arguments, Emotions, and News distribution in social media - Leibniz-WissenschaftsCampus Tübingen
04.05.2018 | Leibniz-Institut für Wissensmedien

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>