Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future smart mobile has to be a true chameleon

21.01.2004


By continously adapting the receiver settings of a mobile phone to the current conditions, the advantage is twofold; facing bad reception, the connection can be improved while in good conditions, the energy consumption can be reduced. This is possible by an automatic controller developed by Lodewijk Smit of the University of Twente in The Netherlands. Smit did his PhD work on this, within the Centre of Telematics and Information Technology (CTIT).



The mobile connection can be optimized by frequently evaluating the quality and adapting the receiver of the mobile device to this level. The conditions are continuously changing. Hence, the quality of the reception is fluctuating. Modern phones will adapt to the service level required (speech, data or video) and not to the reception quality.
By using the advanced control method Smit has developed, the amount of calculation the receiver has to perform, can be decreased drastically. “In this way, it doesn’t have to work harder than strictly necessary. In bad conditions, this means using all resources for the actual signal, thus saving energy. In fair or good conditions, this means saving the battery. This is a major advantage as well. New applications put a growing strain on the battery, while the battery is not improving at the same speed.”

Lodewijk Smit started with a method for evaluating the quality in a simple and accurate way. Current methods send a lot of information over the mobile network, apart from the actual data, before quality level is determined. Smits method decreases this amount of overhead. He calculates a statistical analysis of the data received, to evaluate the probability that a sent symbol is received in the wrong way. The receiver can then be adjusted until the error level is obtained. A limited number of remaining errors is acceptable, as there are standard error-correcting codes in wireless and mobile communication.



Furthermore, Smit is able to predict the influence of the changed settings on energy consumption and connection quality. Up to now, this is not possible without complex calculation models. A major difference with current approaches is that Smit performs a global optimization of the various parts of the receiver. Usually, the parts are optimized separately: this is not necessarily an optimization of the whole.

The research is part of the CHAMELEON-project of the Centre of Telematics and Information Technology (CTIT) of the University of Twente. Within this context, new architectures are developed for energy-efficient architectures of mobile equipment. Too often, according to the CTIT-researchers, mobile devices are designed in basically the same way as desktop devices in which energy consumption is not an issue. Smit expects his method to be easily integrated into the circuits of new generations of mobiles.

Wiebe van der Veen | alfa
Further information:
http://www.cs.utwente.nl/~smitl

More articles from Communications Media:

nachricht New cruise ship “Mein Schiff 1” features Fraunhofer 3D sound on board
05.09.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht Small enclosure, big sound, clear speech
31.08.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>