Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexible Screen Technology Ready to Roll

20.01.2004


In the future, powering up your laptop may require that you unroll it first.



Engineers at the University of Toronto are the first Canadian team to construct flexible organic light emitting devices (FOLEDs), technology that could lay the groundwork for future generations of bendable television, computer and cellphone screens. “It opens up a whole new range of possibilities for the future,” says Zheng-Hong Lu, a professor in U of T’s Department of Materials Science and Engineering. “Imagine a room with electronic wallpaper programmed to display a series of Van Gogh paintings, or a reusable electronic newspaper that could download and display the day’s news and be rolled up after use.”

Today’s flat panel displays are made on heavy, inflexible glass that can break during transportation and installation. Lu, working with post-doctoral fellow Sijin Han and engineering science student Brian Fung, developed FOLEDs made on a variety of lightweight, flexible materials ranging from transparent plastic films to reflective metal foils that can bend or roll into any shape.


FOLED technology could be manufactured using a low-cost, high-efficiency mass production method, Lu says. The team, which is already commercializing some related technology, hopes a marketable device could be created within two to three years.

Their research was funded by the Canadian Foundation for Innovation, the Ontario Innovation Trust, the Premier’s Research Excellence Awards, Materials and Manufacturing Ontario, the Emerging Materials Network and the Ontario Research and Development Challenge Fund. To view a video of the flexible substrate, please visit:
http://www.nit.utoronto.ca/news/03_foled.avi. CONTACT: Professor Zheng-Hong Lu, Department of Materials Science and Engineering, 416-978-1472, zhenghong.lu@utoronto.ca or Nicolle Wahl, U of T public affairs, 416-978-6974, nicolle.wahl@utoronto.ca

Nicolle Wahl | University of Toronto
Further information:
http://www.utoronto.ca

More articles from Communications Media:

nachricht New cruise ship “Mein Schiff 1” features Fraunhofer 3D sound on board
05.09.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht Small enclosure, big sound, clear speech
31.08.2018 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>