Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Health effects from mobile phone radiation

17.10.2003


The increasing use of mobile phones has resulted in increased human exposure to radiofrequency electromagnetic fields: already more than 80% of the Finnish population have a mobile phone. Although the electromagnetic fields from mobile phones are weak, the high number of exposed persons, together with some provocative but inconclusive scientific results, has raised concerns about possible health hazards. Finnish universities and research institutes have investigated possible health effects of mobile phones in a national research programme. The results of this programme will be reported in a seminar held in Helsinki on 17 October, 2003.



The national research programme was carried out in two parts during the years 1998-2003, and was coordinated by the University of Kuopio (Prof. Jukka Juutilainen). The other participantes were STUK – the Radiation and Nuclear Safety Authority, Technical University of Tampere, University of Turku, Finnish Institute of Occupational Health and VTT Information Technology. The main source of funding was TEKES (National Technology Agency; a governmental organisation). The programme was also supported by Nokia, Benefon, Sonera, Elisa, Radiolinja, Finnish 2G, Mobile Manufacturers Forum and GSM Association.

The first part, ”Electromagnetic Fields from Mobile Phones as a Possible Health Risk” was conducted in 1998-2000. This first part of the programme included 6 research projects:


Project 1: STUK designed, constructed and tested two waveguide exposure chambers for cell culture experiments and designed an exposure chamber for animals. The equipment developed in the project have been used for biological experiments by the STUK and the University of Kuopio in the National Research Programme and in EU-funded research projects.

Project 2: The University of Kuopio studied the possibility that radiofrequency electromagnetic fields enhance cancer development. Skin tumors induced by UV radiation were used as the experimental model. Small differences were observed between the experimental groups, but the study did not show statistically significant effects on tumor development.


Project 3: STUK and University of Kuopio carried out experiments with cell cultures – the project tested different cell lines and methods to identify suitable models for investigating biological effects of electromagnetic fields. According to the results, relatively weak electromagnetic fields may cause cellular changes that are consistent with a stress response.

Project 4: The Finnish Institute of Occupational Health conducted a feasibility study for evaluating the association of cellullar phone use with brain and salivary gland cancers. About 400 brain tumors and 34 salivary gland cancers were identified from the Finnish Cancer Registry. Both case-control and cohort designs were studied but neither of the study designs could be regarded feasible enough at the time of the study, since the percentage of phone users was low.

Project 5: The Finnish Institute of Occupational Health studied possible symptoms caused by mobile phone RF fields on hypersensitive persons. 20 volunteers participated, and both analogue (NMT, 900 MHz) and digital phones (GSM 900 and 1800 MHz) were used as exposure sources. Variety of subjective symptoms or sensations were experienced by the test persons but the symptoms and sensations were not related to the exposure condition (true or sham exposure). None of the test persons could distinguish correctly RF exposure from sham exposure.

Project 6: VTT simulated by using dosimetric computer models the exposure of laboratory animals and cell cultures in the chambers developed in Project No. 1. The objective of dosimetry is to find out the "dose" (i.e. the power absorbed from the electromagnetic field) in cells and laboratory animals. This information is essential in order to proportion the results to exposure of a human using a mobile phone. Also the modelling method itself was studied.

The second part, “Health Risk Assessment of Wireless Communication” was carried out during the years 2000-2003. The second part of the programme included ten projects:
1. The effects of radiofrequency electromagnetic fields on cognition and brain function
2. Human circulatory responses during exposure to radiofrequency wireless communication
3. Effects of cellular phones on cardiac pacemakers
4. Activity of the enzyme ODC in cell cultures following RF exposures at 835 and 900 MHz
5. Budding yeast (Saccharomyces cerevisiae) as a model organism for studying the biological
effects of radiofrequency fields
6. Development of in vitro dosimetry and biomarkers to study in vivo RF-EMF biological effects
7. Dynamic adaptive modelling of the human body for radiofrequency radiation absorption
8. Numerical simulation of RF exposure conditions by the FDTD method
9. Case-control study of brain tumor etiology
10. Possible health effects of electromagnetic fields from mobile phones on hearing and balance

The following results (among other things) were obtained in these 10 projects:

· Centre for Cognitive Neuroscience (CCN, University of Turku) examined the effects of mobile phone on brain electrical activity (EEG), short-term memory and attention (cognitive functions), brain blood flow and metabolism, and subjective symptoms both in adults and children (10-14 years). According to EEG studies (3 studies) mobile phone appears to influence brain electrical activity in both adults and children. On the basis of the results from our other studies (7 studies), mobile phone does not affect cognitive functions, brain blood flow or metabolism, or subjective symptoms in adults or children.

· The effects of radiofrequency radiation on ODC activity, cell proliferation, and programmed cell death in yeast cells and cultured rodent cell lines were studied at University of Kuopio. The ODC activity was not clearly affected by different radiofrequency exposure levels or durations. However, our results showed some cell type specificity in radiofrequncy effects on ODC activity. More profound effects were found if cells were coexposed to a known stress factors (e.g. ultraviolet radiation, serum deprivation, or oxidative agents) together with radiofrequency fields. In summary, effects of mere radiofrequency radiation on different cell culture models are quite minor but various coexposure approaches warrant additional studies.

· STUK developed further technical methods for exposing cells to GSM mobile phone radiation.The objective was to improve the accuracy in the determination of the power absorbed (SAR) and the temperature rise in cell dishes. The SAR distribution and the temperature rise in the dish was determined by computing with numerical models and by measuring the electric field and the temperature rise in cell dishes. Measurements were carried out with specially constructed sensors.

· Biological studies showed that radiofrequency modulated electromagnetic fields (GSM 900MHz and GSM 1800 MHz) induced a stress response in the cells. In addition, there were changes in the expression and cellular localization of cytoskeletal proteins. These results support previously presented hypotheses of potential changes in the blood-brain barrier.

· Tampere University of Technology, Ragnar Granit Institute has developed anatomical models for estimation of radio frequency absorption dosimetry. Bone, brain tissue etc. have different intrinsic properties to absorb electromagnetic fields. To construct accurate computational models of the head for example the tissue compartments have to be identified. The basis for this is a stack of medical MR images of which certain anatomical tissue structures are identified. During the project a number of head and thorax models were formed

· VTT continued the dosimetric simulations started in the previous project by using expanded and detailed dosimetric computer models of the exposure chambers for laboratory animals and cell cultures.


More information: Prof. Jukka Juutilainen
Tel. +358 17 163226,050 590 3864 e-mail: jukka.juutilainen@uku.fi
(From Monday, 20 October; not available during the seminar)

Minna Meriläinen | alfa
Further information:
http://www.uku.fi/lavita

More articles from Communications Media:

nachricht Arguments, Emotions, and News distribution in social media - Leibniz-WissenschaftsCampus Tübingen
04.05.2018 | Leibniz-Institut für Wissensmedien

nachricht High Number of Science Enthusiasts in Switzerland
05.02.2018 | Universität Zürich

All articles from Communications Media >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>