Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar study is sweetener for stem cell science

23.07.2008
Scientists at The University of Manchester are striving to discover how the body’s natural sugars can be used to create stem cell treatments for heart disease and nerve damage – thanks to a £370,000 funding boost.

All cells that make up the tissues of the body – such as skin, liver, brain and blood – are surrounded by a layer of sugars that coat the cells.

These sugars help the cells to know what type of cell they are and to respond to the other cells which surround them and the chemical messages that pass between cells.

Now Dr Catherine Merry from The School of Materials has been awarded a prestigious New Investigator Research Grant by the Medical Research Council (MRC) to investigate how different cells make different sugar types and to test out theories on how sugars can influence cell behaviour.

Dr Merry, who is leading the research, said: “At present, the way in which cells make these sugars is not well understood. From the little we do know, we believe isolated fragments of these sugars could be used to instruct cells to behave in particular ways.

“We also think we might be able to force cells to make one particular type of sugar and not another, thereby influencing the way in which that cell grows and interacts with other cells.

“This work is important in helping us understand how the sugars made by the cells change during this process.

“We also believe our research might suggest how sugars can be used to help embryonic stem cells grow in the lab – or how they can be instructed to become cell types which could be of use in human therapies to treat problems with nerve, heart muscle or blood cells.

“Although the prospect of creating cells from embryonic stem cells for use in humans is still a considerable time away, research such as ours helps move towards this goal.”

Dr Merry’s research will take place over three years in newly refurbished high-tech laboratories in the Materials Science Centre at the University.

A recent £300,000 upgrade to five laboratories has led to a new biomaterials and tissue engineering research facility being established – and has helped transform what was a very small interest in The School of Materials into a major focus of future work.

The upgrade, funded by the Royal Society Wolfson Foundation, is paving the way for cutting-edge research in the fields of molecular biology, stem cell culture and nanofabrication,

A new confocal microscope that produces high-resolution 3D optical images has also been installed thanks to £250,000 funding from the Biotechnology and Biological Sciences Research Council (BBSRC).

The new labs in the Materials Science Centre form part of the UK Centre for Tissue Regeneration, which was established in 2006 with a £1.5 million grant from the Northwest Regional Development Agency and involves researchers from across the university.

Alex Waddington | alfa
Further information:
http://www.manchester.ac.uk

More articles from Awards Funding:

nachricht Ultrasound Connects
13.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Improving the understanding of death receptor functions in cells
07.11.2018 | Goethe-Universität Frankfurt am Main

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>