Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar study is sweetener for stem cell science

23.07.2008
Scientists at The University of Manchester are striving to discover how the body’s natural sugars can be used to create stem cell treatments for heart disease and nerve damage – thanks to a £370,000 funding boost.

All cells that make up the tissues of the body – such as skin, liver, brain and blood – are surrounded by a layer of sugars that coat the cells.

These sugars help the cells to know what type of cell they are and to respond to the other cells which surround them and the chemical messages that pass between cells.

Now Dr Catherine Merry from The School of Materials has been awarded a prestigious New Investigator Research Grant by the Medical Research Council (MRC) to investigate how different cells make different sugar types and to test out theories on how sugars can influence cell behaviour.

Dr Merry, who is leading the research, said: “At present, the way in which cells make these sugars is not well understood. From the little we do know, we believe isolated fragments of these sugars could be used to instruct cells to behave in particular ways.

“We also think we might be able to force cells to make one particular type of sugar and not another, thereby influencing the way in which that cell grows and interacts with other cells.

“This work is important in helping us understand how the sugars made by the cells change during this process.

“We also believe our research might suggest how sugars can be used to help embryonic stem cells grow in the lab – or how they can be instructed to become cell types which could be of use in human therapies to treat problems with nerve, heart muscle or blood cells.

“Although the prospect of creating cells from embryonic stem cells for use in humans is still a considerable time away, research such as ours helps move towards this goal.”

Dr Merry’s research will take place over three years in newly refurbished high-tech laboratories in the Materials Science Centre at the University.

A recent £300,000 upgrade to five laboratories has led to a new biomaterials and tissue engineering research facility being established – and has helped transform what was a very small interest in The School of Materials into a major focus of future work.

The upgrade, funded by the Royal Society Wolfson Foundation, is paving the way for cutting-edge research in the fields of molecular biology, stem cell culture and nanofabrication,

A new confocal microscope that produces high-resolution 3D optical images has also been installed thanks to £250,000 funding from the Biotechnology and Biological Sciences Research Council (BBSRC).

The new labs in the Materials Science Centre form part of the UK Centre for Tissue Regeneration, which was established in 2006 with a £1.5 million grant from the Northwest Regional Development Agency and involves researchers from across the university.

Alex Waddington | alfa
Further information:
http://www.manchester.ac.uk

More articles from Awards Funding:

nachricht ESJET printing technology for large area active devices awarded
11.04.2019 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Pushing digital process optimization
02.04.2019 | Technische Universität Chemnitz

All articles from Awards Funding >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Researchers discover surprising quantum effect in hard disk drive material

26.04.2019 | Physics and Astronomy

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>