Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

City research draws on Formula 1 technology for the construction of skyscrapers

10.12.2019

Civil engineering academic is developing new vibration-control devices based on Formula 1 technology for skyscrapers

City, University London draws on Formula 1 technology for the construction of "needle-like" skyscrapers.


Researchers City, University of London are developing new vibration-control devices based on Formula 1 technology so 'needle-like' high-rise skyscrapers which still withstand high winds can be built. Current devices called tuned mass dampers (TMDs) are fitted in the top floors of tall buildings to act like heavyweight pendulums counteracting building movement caused by winds and earthquakes.

Credit: City, University of London


This is a diagram showing adaptive vibration suppression devices for occupants comfort and energy harvesting in wind-excited slender tall buildings.

Credit: Dr Agathoklis Giaralis

Researchers City, University of London are developing new vibration-control devices based on Formula 1 technology so "needle-like" high-rise skyscrapers which still withstand high winds can be built

Current devices called tuned mass dampers (TMDs) are fitted in the top floors of tall buildings to act like heavyweight pendulums counteracting building movement caused by winds and earthquakes. But they weigh up to 1,000 tons and span five storeys in 100-storey buildings - adding millions to building costs and using up premium space in tight city centres.

Recent research work published by Dr Agathoklis Giaralis (an expert in structural dynamics at City, University of London), and his colleagues, published in the November 2019 edition of the Engineering Structures journal (Optimal tuned mass damper inter design in wind-excited tall buildings for occupants' comfort serviceability, preferences and energy harvesting) found that lightweight and compact inerters, similar to those developed for the suspension systems of Formula 1 cars, can reduce the required weight of current TMDs by up to 70%.

Dr Giaralis said: "If we can achieve smaller, lighter TMDs, then we can build taller and thinner buildings without causing seasickness for occupants when it is windy. Such slender structures will require fewer materials and resources, and so will cost less and be more sustainable, while taking up less space and also being aesthetically more pleasing to the eye. In a city like London, where space is at a premium and land is expensive, the only real option is to go up, so this technology can be a game-changer."

Tests have shown that up to 30% less steel is needed in beams and columns of typical 20-storey steel building thanks to the new devices. Computer model analyses for an existing London building, the 48-storey Newington Butts in Elephant and Castle, Southwark, had shown that "floor acceleration" - the measure of occupants' comfort against seasickness - can be reduced by 30% with the newly proposed technology.

"This reduction in floor acceleration is significant," added Dr Giaralis. "It means the devices are also more effective in ensuring that buildings can withstand high winds and earthquakes. Even moderate winds can cause seasickness or dizziness to occupants and climate change suggests that stronger winds will become more frequent. The inerter-based vibration control technology we are testing is demonstrating that it can significantly reduce this risk with low up-front cost in new, even very slender, buildings and with small structural modifications in existing buildings." Dr Giaralis said there was a further advantage:

"As well as achieving reduced carbon emissions through requiring fewer materials, we can also harvest energy from wind-induced oscillations - I don't believe that we are able at the moment to have a building that is completely self-sustaining using this technology, but we can definitely harvest enough for powering wireless sensors used for inner building climate control."

###

Notes to journalists and editors

For further information on Dr Giaralis' research please, please contact John Stevenson: John.Stevenson.1@city.ac.uk Tel: 020 7040 8752 - Mob: 07816597243

About City, University of London

City, University of London is a global higher education institution committed to academic excellence, with a focus on business and the professions and an enviable central London location.

City's academic range is broadly-based with world-leading strengths in business; law; health sciences; mathematics; computer science; engineering; social sciences; and the arts including journalism and music.

City has around 18,000 students (35% at postgraduate level) from more than 160 countries and staff from over 75 countries.

In the last REF, City doubled the proportion of its total academic staff producing world-leading or internationally excellent research.

More than 130,000 former students from over 180 countries are members of the City Alumni Network.

The University's history dates from 1894, with the foundation of the Northampton Institute on what is now the main part of City's campus. In 1966, City was granted University status by Royal Charter and the Lord Mayor of London became its Chancellor. In September 2016, City joined the University of London and HRH the Princess Royal became City's Chancellor. Led by President, Professor Sir Paul Curran since 2010, City has made signi?cant investments in its academic staff, its estate and its infrastructure and continues to work towards realising its vision of being a leading global university: it has recently agreed a new Vision & Strategy 2026.

Media Contact

John Stevenson
John.Stevenson.1@city.ac.uk
020-704-08752

http://www.city.ac.uk 

John Stevenson | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.engstruct.2019.109904

More articles from Architecture and Construction:

nachricht TU Graz researchers want to fundamentally improve concrete diagnostics
29.06.2020 | Technische Universität Graz

nachricht The digital construction site: A smarter way of building with mobile robots
02.06.2020 | Fraunhofer Italia

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Shedding light on the brown color of algae

14.07.2020 | Life Sciences

Color barcode becomes ISO standard

14.07.2020 | Information Technology

New substance library to accelerate the search for active compounds

14.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>