Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unearthing and protecting soil functions

14.06.2013
Residential and infrastructure construction projects are expanding at the expense of land under cultivation.

Beneath the surface, the ecosystem soil performs important services: It gives nutrients to plants, and provides clean drinking water. The new National Research Programme “Sustainable use of soil as a resource” (NRP 68) aims to uncover these functions, heightening awareness of the finite resource beneath our feet.

The debate about the growing housing requirement and the resulting increase in urban development is lacking a dimension: all of the arguments are literally superficial, focusing not on volume but on the surface area, which is increasingly scarce, especially in the Swiss central plateau (Mittelland). In contrast, the National Research Programme “Sustainable Use of soil as a Resource” (NRP 68), which was launched this year, is going underground to improve understanding and appreciation of the soil ecosystem in a three-dimensional context.

“The methods and concepts that are being developed in NRP 68 should ensure that greater attention is paid to soil functions, thus improving the sustainable management of soil as a resource,” says Josef Zeyer, Professor of Environmental Microbiology at ETH Zurich and President of the Steering Committee of the new research programme.

The unknown living environment under the ground
The objective of NRP 68 is to increase the knowledge about life below the surface, so that, in the future, greater attention can be given to the soil when planning new construction zones, for example. An abundance of bacteria, fungi and nematodes exists underground. While these organisms are often invisible to the naked eye, they break down organic residues, providing plants with nutrients. They also stabilise the structure of the soil and remove impurities from groundwater. Can agriculture improve the use it makes of this environment? What effects will the anticipated climatic changes have on the soil’s role as a carbon store in the future? And can the purchase or lease of land in Africa by Swiss enterprises to produce food using industrial agricultural methods be justified?

Nineteen research projects are studying questions ranging from investigations into the increase of pollutants in cultivated soils in Switzerland to assessments of the political and social economic factors that contribute to our unrestrained consumption of the ground and to urbanisation. The NRP 68 programme will have access to CHF 13 million over the next five years in order to achieve its objectives.

More detailed information is available at www.nrp68.ch.
Contact
Prof. Josef Zeyer
President of the NRP 68 Steering Committee
Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich
Universitätstrasse 16
CH-8092 Zurich
Tel: +41 44 633 60 44
E-mail: zeyer@env.ethz.ch

Abteilung Kommunikation | idw
Further information:
http://www.snsf.ch
http://www.nrp68.ch

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>