Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetically modified eggplants (aubergines) shown to be 30% more productive

26.04.2002


Research, published in the online journal, BMC Biotechnology shows how researchers in Italy have used genetically modified eggplants made by the introduction of a gene that increases the level of the plant hormone indole acetic acid (IAA) to produce seedless fruits. Furthermore, these genetically modified eggplants are 30-35% more productive than conventional varieties in both greenhouse and field trials.

The public have a special liking for seedless fruits for two reasons, firstly seeds are often hard and unpalatable and secondly, since seed cavities are filled with fruit tissues instead of seeds, they get more fruit for their money. Consequently there is a great deal of interest in producing seedless fruit in agriculture.

Previous studies have shown that the application of IAA, to flower buds (the part of a plant from which fruits develop) can stimulate the development of fruit in the absence of fertilisation. This technique produces seedless fruit, but it is expensive because of the cost of the IAA and the labour required to treat the flower buds.



The researchers from Italy used genetic engineering to make eggplants produce seedless fruit spontaneously. This was done by inserting a gene, which codes for a molecule involved in the production of IAA that was only “turned on” in the flower buds. It is critical that IAA production was confined to the flower buds as this hormone is involved in a range of different processes in other parts of the plant such as the response of the plant to light and gravity. This specificity was achieved by combining DNA from two genes, one that contained the instructions of how to make the molecule that is needed to manufacture IAA and a second that contained the information that tells the plant to only produce this molecule in the cells located in the flower buds.

The researchers carried out three trials, two of which were conducted in greenhouses and one in an open field site in central Italy. They compared the weight of the eggplant harvest from the genetically engineered plants with eggplants that had not been genetically modified and found increased production of fruit in their genetically modified eggplants in all three trials.

From an economic standpoint the genetically modified eggplants have three major advantages over conventional varieties. Firstly, they produce more fruit with an overall increase in productivity of at least 30-35%. Secondly, the cultivation costs of producing seedless fruit was reduced and finally the genetically modified eggplants could produce fruit in conditions normally considered too cool for fruit production.



Gordon Fletcher | alphagalileo
Further information:
http://www.biomedcentral.com/1472-6750/2/4/

More articles from Agricultural and Forestry Science:

nachricht Researchers discover natural product that could lead to new class of commercial herbicide
16.07.2018 | UCLA Samueli School of Engineering

nachricht Advance warning system via cell phone app: Avoiding extreme weather damage in agriculture
12.07.2018 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>