Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bangladesh to dramatically expand technology that doubles efficiency of urea fertilizer use

19.12.2007
Urea deep placement cuts nitrogen losses significantly

The Government of Bangladesh has announced that it will expand urea deep placement (UDP)—a technology that doubles the efficiency of urea fertilizer use—to almost 1 million hectares (ha) of rice land, reaching about 1.6 million farm families, in the coming boro or dry season.

UDP is the insertion of large urea briquettes into the rice root zone after transplanting. UDP cuts nitrogen losses significantly. Farmers who use UDP can increase yields by 25% while using less than 50% as much urea as before.

The effectiveness of UDP technology in Bangladesh was proven through research funded by the International Fund for Agricultural Development (IFAD) and implemented with the assistance of IFDC—An International Center for Soil Fertility and Agricultural Development. The Ministry of Agriculture of Bangladesh has requested that IFDC help implement the expanded project.

“Millions of rice farmers in Asia depend on urea fertilizer to meet the nitrogen needs of high-yielding rice varieties,” says Dr. Amit Roy, IFDC CEO. Most farmers, including those in Bangladesh, Vietnam, and Cambodia, broadcast urea into the floodwater.

But broadcasting is a highly inefficient application method because most of the nitrogen is lost to the air and water. Only one bag of urea in three is used by the plants.

Using UDP, Bangladesh’s dry season rice production is expected to increase by 548,000 tons, according to the Department of Agricultural Extension (DAE).

“Yields were comparatively good where urea was deep placed,” says Dr. C.S. Karim, Advisor, Bangladesh Ministry of Agriculture. “If we can save at least 20% of the urea by adopting UDP technology, we can supply a large part of the country’s demand from our own factories.”

UDP technology improves nitrogen use efficiency by keeping most of the urea nitrogen in the soil close to the rice roots and out of the floodwater, where it is more susceptible to loss as gaseous compounds or runoff.

The technology not only improves farmer income, but creates employment because of the need for the briquettes. Ten Bangladeshi manufacturers have produced and sold more than 2,000 briquette-making machines. The new UDP program will include the manufacture and establishment of some 300 briquetting machines to manufacture 2.7-gram briquettes.

UDP technology was introduced in Bangladesh in the late 1990s; by 2006 more than half a million farmers had adopted UDP. Average paddy yields had increased 20% to 25%, and income from paddy sales increased by 10%, while urea expenditures decreased 32%. Farmers who use UDP can reduce urea use by 78 to 150 kg/ha and increase paddy yields by 900 to 1,100 kg/ha. The net return to farmers of using UDP versus broadcasting urea averages $188/ha.

“I’m delighted that the Government of Bangladesh endorses the merit of this technology and has asked IFDC to be a part of the project,” Roy says.

Bangladesh’s success with UDP has become a model for other rice-growing countries, Roy says. IFDC has also introduced UDP in Cambodia, Vietnam, Nepal, Nigeria, Mali, Togo, and Malawi.

Thomas Hargrove | EurekAlert!
Further information:
http://www.ifdc.org

More articles from Agricultural and Forestry Science:

nachricht Sustainable forest management contributes more to climate protection than forest wilderness
07.02.2020 | Max-Planck-Institut für Biogeochemie

nachricht Microscopic partners could help plants survive stressful environments
30.01.2020 | Washington State University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>