Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodegradable or not?

10.12.2013
Scientists are developing classifications in order to better differentiate readily-biodegradable from long-lasting pesticides

In order to improve the evaluation process for the long-term consequences of pesticides, scientists have developed a new detection method and a model that can enable determinations regarding whether and how readily biodegradable the residues of pesticides are.


Photo: Kara-Fotolia.de

The study, conducted by scientists at the Helmholtz-Centre for Environmental Research (UFZ), the Rhine-Westphalian Technical University Aachen (RWTH) and the Technical University of Denmark has recently appeared in the scientific journal "Critical Reviews in Environmental Science and Technology".

Pesticides have a bad reputation: they harm the environment, have negative effects on the diversity of species and pollute the soil. "This is partially correct, but also partially incorrect. Pesticides are important for the efficacy of our modern agriculture methods.

And pesticides are not necessarily pesticides - differentiation is necessary in this context. Generally speaking, biodegradability is supposed to be the top priority when deploying pesticides", says Prof. Dr. Matthias Kästner, Director of the Department Environmental Biotechnology at the Helmholtz-Centre for Environmental Research (UFZ) in Leipzig.

Worldwide, today approximately 5,000 pesticides are utilized as substances for plant protection and for pest control. As varied as their respective effectiveness is, their effects on the environment are equally varied. Some pesticides are quickly biodegraded, while others take longer. And some of them create chemical bonds with components in the soil and form the so-called bound residues. One has always previously assumed that these residues were, per se, toxic.

This is why pesticides that form more than 70% bound residues are no longer in compliance today. Kästner: "But what exactly is concealed behind these bound residues, i.e. whether or not they really are toxic or what chemical structures they have hidden, could not yet been evaluated."

By applying the so-called 13C-method, Kästner and his team applied pesticides onto various reference soils and examined them thoroughly regarding their fate. For this purpose, they initially marked the pesticide to be examined with the non-radioactive, heavy carbon isotope 13C - and tracked it in various bio-molecules with the aid of a mass spectrometer after completion of the experiment timeframe. In this manner the scientists were able to determine the residues, the changes in the pesticide, and its breakdown products in the soil.

The most significant result from the study states - there are various groups of bound residues. In the current issue of the technical journal "Critical Reviews in Environmental Science and Technology", the UFZ research scientists compile their results and introduce a classification system and a modelling approach for bound residues. As regards Type 1, the pesticide itself or its breakdown products of organic materials are deposited in the soil (humus) or trapped within, and can in principle be released at any time.

If the pesticide has undergone a chemical bond with the humus, bound residues are allocated to the Type 2, which can only be released with difficulty. Residues from both Type 1 and Type 2 are to be categorised as toxicologically relevant. "At this juncture a precise examination must be carried out regarding whether or not approval of a pesticide that forms such residues in the soil is possible and defensible," says Matthias Kästner.

As regards residues of the Type 3, the pesticide was decomposed by bacteria, and the carbon contained therein was transported into the microbial bio-mass. "For these kinds of residues, we can give the "all-clear" signal and confirm that there is no further risk", Kästner states.

Pesticides, from which the bound residues in the soil are allocated to Type 3, could thus be approved without risk in the future. Conversely, pesticides, which heretofore were considered to be risk-free, could possibly be classified as critical using this method. Kästner says "Only when we are capable of differentiating between biodegradable and high-risk pesticide residues we can act accordingly. This is why we hope that the 13C-method will be included in the dossiers of the approval procedure in the future. This is what we suggested to the German Federal Environmental Agency as well."

The initial findings from the UFZ study have already been accepted into the assessment processes of the officials involved in the approval procedure. Thus, for the residues of the approved pesticides 2.4 dichlorphenoxyacetic acid (2.4-D for short) and 2 methyl 4 chlorphenoxyacetic acid (MCPA for short), they were able to give the all-clear. "In order to better control the deployment of pesticides and their environmental consequences, we still have a lot of work to do", says Kästner. "The problems that we had with DDT (dichlorodiphenyltrichloroethane) and atrazine must not be repeated. Therefore, it is very important to understand what actually happens with pesticides after application." Nicole Silbermann

Publication:
Matthias Kästner, Karolina M. Nowak, Anja Miltner, Stefan Trapp, Andreas Schäffer (2013): Classification and modelling of non-extractable residue (NER) formation of xenobiotics in soil - a synthesis. Critical Reviews in Environmental Science and Technology. DOI: 10.1080/10643389.2013.828270
http://dx.doi.org/10.1080/10643389.2013.828270
This study was funded by the European Commission (EU-Projects RaiseBio and MagicPAH).
Further information:
Prof. Matthias Kästner
Helmholtz Centre for Environmental Research (UFZ)
Tel. 0341-235-1235
http://www.ufz.de/index.php?de=4459
or
Tilo Arnhold / Susanne Hufe (UFZ Public Relations)
Telephone: 0341-235-1630, -1635
http://www.ufz.de/index.php?de=640
Links:
Risk Assessment and Environmental Safety Affected by Compound Bioavailability in Multiphase Environments (RAISEBIO):
http://www.ufz.de/index.php?de=10757
Molecular Approaches and MetaGenomic Investigations for optimizing Clean-up of PAH contaminated sites (MAGICPAH):

http://www.magicpah.org/

In the Helmholtz Centre for Environmental Research (UFZ), scientists conduct research into the causes and consequences of far-reaching environmental changes. Their areas of study cover water resources, biodiversity, the consequences of climate change and possible adaptation strategies, environmental technologies and biotechnologies, bio-energy, the effects of chemicals in the environment and the way they influence health, modelling and social-scientific issues. Its guiding principle: Our research contributes to the sustainable use of natural resources and helps to provide long-term protection for these vital assets in the face of global change. The UFZ employs more than 1,100 staff at its sites in Leipzig, Halle and Magdeburg. It is funded by the federal government, Saxony and Saxony-Anhalt. http://www.ufz.de/

The Helmholtz Association contributes to solving major and urgent issues in society, science and industry through scientific excellence in six research areas: Energy, earth and environment, health, key technologies, structure of matter as well as aviation, aerospace and transportation. The Helmholtz Association is the largest scientific organisation in Germany, with 35,000 employees in 18 research centres and an annual budget of around €3.8 billion. Its work is carried out in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/

Nicole Silbermann/Tilo Arnhold | UFZ News
Further information:
http://www.ufz.de/index.php?en=32259

More articles from Agricultural and Forestry Science:

nachricht Cereals use chemical defenses in a multifunctional manner against different herbivores
06.12.2018 | Max-Planck-Institut für chemische Ökologie

nachricht Can rice filter water from ag fields?
05.12.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>