Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Toronto engineers solve energy puzzle

07.11.2011
University of Toronto research demonstrates how energy levels align in organic-based technologies

University of Toronto materials science and engineering (MSE) researchers have demonstrated for the first time the key mechanism behind how energy levels align in a critical group of advanced materials.

This discovery is a significant breakthrough in the development of sustainable technologies such as dye-sensitized solar cells and organic light-emitting diodes (OLEDs).

Transition metal oxides, which are best-known for their application as super-conductors, have made possible many sustainable technologies developed over the last two decades, including organic photovoltaics and organic light-emitting diodes. While it is known that these materials make excellent electrical contacts in organic-based devices, it wasn't known why.

Until now

In research published today in Nature Materials, MSE PhD Candidate Mark T. Greiner and Professor Zheng-Hong Lu, Canada Research Chair (Tier I) in Organic Optoelectronics, lay out the blueprint that conclusively establishes the principle of energy alignment at the interface between transition metal oxides and organic molecules.

"The energy-level of molecules on materials surfaces is like a massive jigsaw puzzle that has challenged the scientific community for a very long time," says Professor Lu. "There have been a number of suggested theories with many critical links missing. We have been fortunate to successfully build these links to finally solve this decades-old puzzle."

With this piece of the puzzle solved, this discovery could enable scientists and engineers to design simpler and more efficient organic solar cells and OLEDs to further enhance sustainable technologies and help secure our energy future.

This publication marks the third major research paper in 2011 for Professor Lu's Organic Optoelectronics Research Group. Science published PhD Candidate Michael G. Helander's "Chlorinated Indium Tin Oxide Electrodes with High Work Function for Organic Device Compatibility" on April 14 and Nature Phototonics published PhD Candidate Zhibin Wang's "Unlocking the Full Potential of Organic Light-Emitting Diodes on Flexible Plastic" on Oct. 30.

Liam Mitchell | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Materials Sciences:

nachricht New materials: Growing polymer pelts
19.11.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Why geckos can stick to walls
19.11.2018 | Jacobs University Bremen gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>