University of Toronto engineers solve energy puzzle

University of Toronto materials science and engineering (MSE) researchers have demonstrated for the first time the key mechanism behind how energy levels align in a critical group of advanced materials.

This discovery is a significant breakthrough in the development of sustainable technologies such as dye-sensitized solar cells and organic light-emitting diodes (OLEDs).

Transition metal oxides, which are best-known for their application as super-conductors, have made possible many sustainable technologies developed over the last two decades, including organic photovoltaics and organic light-emitting diodes. While it is known that these materials make excellent electrical contacts in organic-based devices, it wasn't known why.

Until now

In research published today in Nature Materials, MSE PhD Candidate Mark T. Greiner and Professor Zheng-Hong Lu, Canada Research Chair (Tier I) in Organic Optoelectronics, lay out the blueprint that conclusively establishes the principle of energy alignment at the interface between transition metal oxides and organic molecules.

“The energy-level of molecules on materials surfaces is like a massive jigsaw puzzle that has challenged the scientific community for a very long time,” says Professor Lu. “There have been a number of suggested theories with many critical links missing. We have been fortunate to successfully build these links to finally solve this decades-old puzzle.”

With this piece of the puzzle solved, this discovery could enable scientists and engineers to design simpler and more efficient organic solar cells and OLEDs to further enhance sustainable technologies and help secure our energy future.

This publication marks the third major research paper in 2011 for Professor Lu's Organic Optoelectronics Research Group. Science published PhD Candidate Michael G. Helander's “Chlorinated Indium Tin Oxide Electrodes with High Work Function for Organic Device Compatibility” on April 14 and Nature Phototonics published PhD Candidate Zhibin Wang's “Unlocking the Full Potential of Organic Light-Emitting Diodes on Flexible Plastic” on Oct. 30.

Media Contact

Liam Mitchell EurekAlert!

More Information:

http://www.utoronto.ca

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors