Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toward designing/controlling flexibility of MOFs

27.12.2017

Porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) have been extensively studied for their diversified and designable/tailorable framework and pore structures. Compared with conventional porous materials, MOFs have much larger framework flexibility, which can give rise to not only various types of interesting structural responses and dynamic behaviors toward external stimuli, but also significantly improved performances for storage, separation, sensing and other applications.

Therefore, controlling the flexibility of MOFs, or rational design and synthesis of MOFs with specified flexibility and dynamism, are of practical importance. However, framework flexibility is simultaneously controlled by many factors, and trivial difference of a structural parameter or other factor related with the sample or environment can drastically change the response. In other words, framework flexibility can be more difficult to design or control, compared with the static features such as framework and pore structures.


Flexible metal-organic frameworks: from controlling the structures to controlling the flexibility.

Credit: ©Science China Press

In a new review published in the Beijing-based journal National Science Review, scientists at the Sun Yat-Sen University in Guangzhou, China present the advances in designing/controlling the flexibility of MOFs. Co-authors Jie-Peng Zhang, Hao-Long Zhou, Dong-Dong Zhou, Pei-Qin Liao and Xiao-Ming Chen first define and distinguish the concepts of controlling the structure of flexible MOFs and controlling the flexibility of MOFs.

The former refers to the change of framework structures of flexible MOFs toward external chemical (guest adsorption/desorption/exchange) and physical (temperature, light, pressure, etc.) stimuli, which is the intrinsic property of flexible MOFs and has been the topics of most researches. On the other hand, the latter uses external environment to modulate the structural response and dynamic behavior of MOFs, or designs/synthesizes new MOF materials/samples to generate specified structural response and dynamic behavior toward a given external stimulus.

Based on discussions of representative examples, they systematically summarize the basic strategies for designing/controlling flexibility of MOFs, i.e., design, synthesis, and modification of the porous host, controlling the composition and size/morphology of the porous crystal sample, and controlling the external physical environment, in which the target gradually changes from designing new materials to modulating the property of existing materials.

The scientists emphasize that, "It should be pointed out that, designing, tailoring, or controlling framework flexibility is not only useful for understanding the structure-property relationship of MOFs, but also a new dimension for developing MOF materials with excellent performances for molecular recognition, high storage/delivery capacity, selective separation, abnormal/controllable thermal expansion, and so on."

###

This work was supported by the National Basic Research Program of China (973 Project, 2014CB845602) and the National Natural Science Foundation of China (21290173 and 21473260)

See the article:

Jie-Peng Zhang, Hao-Long Zhou, Dong-Dong Zhou, Pei-Qin Liao, and Xiao-Ming Chen
Controlling flexibility of metal-organic frameworks
Natl Sci Rev, 2017, doi: 10.1093/nsr/nwx127
https://doi.org/10.1093/nsr/nwx127

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Jie-Peng Zhang | EurekAlert!

More articles from Materials Sciences:

nachricht New materials: Growing polymer pelts
19.11.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Why geckos can stick to walls
19.11.2018 | Jacobs University Bremen gGmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>